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 الملخص

، وتحليل   t testتستند النماذج الاحصائية المعلمية مثل )الارتباط، الانحدار،      
اهم هذه الفروض هو ان تتبع الاخطاء  .(على العديد من الفروض. احد..التباين، إلخ

الفرض ، فإن   العشوائية او المتغيرات المستقلة للتوزيع الطبيعي. إذا لم يتحقق هذا
التحليلات والتفسيرات تكون غير جديرة بالثقه وقد تؤدي الى استنتاجات غير 

صحيحة. وتوجد طرق عديدة للتحقق من فرض الاعتدالية للبيانات عن طريق 
او قد يتم  Q-Q plotالإحصائية مثل المدرج التكراري والساق والاوراق و  الرسومات

 اجراء الإختبار بإستخدام الطرق الرياضية المعروفة. 
الهدف الرئيسى من الورقه البحثية هو دراسة اهم اختبارات التوزيع الطبيعي و       

ختبارات الى ففي بعض الاحيان قد تؤدي بعض الا عمل مقارنة بين هذه الاختبارات، 
رفض الوزيع الطبيعي بينما تؤدي اختبارات اخرى الى قبول فرض التوزيع الطبيعي، 
مما يحعل الباحث في حيرة عن حساب هذه الاختبارات، وبالتالي وعن طريق حساب 

قوة الاختبارات تحت شروط مختلفه. ، تم عمل مقارنة بين هذه الإختبارات لتحديد  
 افضل الاختبارات. 
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Abstract  

     The condition of normality is required for Standard statistical 

procedures. the results of these methods will be in. improper 

when the normality in not satisfied. There for, the normality 

assumption is required before proceeding most statistical 

analysis. There are many tests available to assess the assumption 

of normality, these tests do not have the same nature and power 

to diagnose the departures of data from normality, there for the 

choice of appropriate test always remain an important key in the 

assessment of normality  

   In this article and due to the importance of this subject and wide 

spread development of normality tests, a comprehensive Power 

comparison study of existing and new developed tests for 

normality is proposed. This study addresses the performance of 

36 normality tests, for various sample sizes, considering several 

significance levels and for a number of symmetric and 

asymmetric distributions. General results for normality testing 

from this study are discussed according to the nature of 

alternative distribution. 

Keywords: Tests for normality; Monte Carlo simulation; Power 

comparison; normal distribution. 

1.Introduction 

     There is many of statistical models and procedures that depend 

on the validity of a given data hypothesis, being the normality of 

the data assumption one of the most commonly found in statistical 

studies. Statistical procedure like standard errors and 

consequently, the test statistics computed from such standard 

errors in parametric statistics such as the t-test, tests for regression 

coefficients, analysis of variance, and the F-test of homogeneity 

of variance include the tests that have as an underlying 



    2021/   11/    23  Accepted DateElwahab Hagag      -Abd    Normality tests Procedure            

Scientific Journal for Economic& Commerce                             501  
  

  

 

 

 

 

 

 

 

assumption, the distribution of the population from which the 

sample data was generated to have be normal The normality tests 

can, therefore, be seen to be of much importance since the 

acceptance or rejection of the normality assumption of given data 

set plays central role in numerous research fields. The problem of 

testing normality has become very importance in both theoretical 

and empirical research and has led to the development of a large 

number of goodness-of-fit tests to detect departures from 

normality. There is nearly 40 different normality tests have been 

developed [1]. Given the importance of this subject and the 

extensive development of normality tests over the years, 

comprehensive characterizations and power comparisons of 

normality tests have also been the focus of attention, thus helping 

the analyst in the choice of best tests for this particular needs. 

normality tests that have been developed are based on different 

characteristics of the normal distribution, it can be seen from 

these comparison studies that their power to detect departures 

from normality can be significantly different depending on the 

nature of the non-normality. 

     The easiest way for detecting normality using graphical 

methods. The normal quantile-quantile plot (Q-Q plot) is the most 

commonly used and effective diagnostic tool for checking 

normality of the data [2]. There are other graphical methods that 

can be used to assess the normality assumption include histogram, 

box-plot and stem-and-leaf plot. Even though the graphical 

methods can serve as a useful way in checking normality for 

sample of n independent observations, they are still not sufficient 

to provide conclusive evidence that the normal assumption holds. 

Therefore, to support the graphical methods, more formal 

methods which are the numerical methods and formal normality 
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tests should be performed before making any conclusion about 

the normality of the data.  

     Simulation study is presented herein to estimate the power of 

36 tests aiming to assess the validity of the univariate normality 

assumption of a data set. The selected normality tests include a 

group of well-established normality tests and more recently 

developed ones. Section 2 presents general description of the 

normality tests and grouped in to four general categories, section 

(2.1) tests based on empirical distribution function section (2.2) 

tests based on moments section (2.3) tests based on regression 

and correlation section (2.4) other tests for normality, while 

Section3 discuses simulation study for power comparison of 

normality tests by using Monte Carlo computations. The 

simulation process was carried out using R programming. Section 

5 presents the power results of the normality tests for the different 

alternative distribution. Finally, conclusions and 

recommendations resulting from the study are provided in 

Section 6. 

2. Tests for normality 

     The normality tests are considered in this study for testing the 

composite null hypothesis for the case where both location and 

scale parameters, μ and σ, respectively, are unknown. Normality 

test formulations differ based on the different characteristics of 

the normal distribution they focus.  

     In the this study, it is considered that 𝑥1, 𝑥2, . . . , 𝑥𝑛 represent a 

random sample of size 𝑛; 𝑥(1), 𝑥(2), . . . , 𝑥(𝑛)  represent the order 

statistics of that sample;  𝑥, 𝑠2, the sample mean (𝑥̅), variance 

(𝑠2) respectively given by 
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𝑥̅ = 𝑛−1∑𝑥𝑖     ;        𝑠
2

𝑛

𝑖=1

= (𝑛 − 1)−1∑(𝑥𝑖 −

𝑛

𝑖=1

𝑥̅)2 , 

kewness and kurtosis are respectively given by, 

 

 

√β1 =
𝜇3

𝜇2

3
2

= 
𝜇3

𝜎3/2 
                          ;                β2 =

𝜇4

𝜇2
2 = 

𝜇4

𝜎4
  

 

where the 𝑘𝑡ℎ central moment 𝜇𝑘 is defined b 

 

𝜇𝑘 = 𝑛−1∑(𝑥𝑖 − 𝑥̅)
2

𝑛

𝑖=1

 

 

2.1. Empirical Distribution Function Tests 

     The methodology of the Empirical Distribution Function 

(EDF) tests in testing normality of data is to compare the 

empirical distribution function which is estimated based on the 

data with the cumulative distribution function (CDF) of normal 

distribution to see if there is a good agreement between them. 

2.1.1 The Kolmogorov-Smirnov modified by Lilliefors Test 

Statistic  

     Lilliefors [3]. modified Kolmogorov’s test statistic used for 

testing normality. The KS test is appropriate in a situation where 

the parameters of the hypothesized distribution are completely 

known. However, sometimes it is difficult to completely or 

initially specify the parameters as the distribution is unknown. In 
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this case, the parameters need to be estimated based on the sample 

data. When the original KS statistic is used in such situation, the 

results can be misleading where the probability of type I error 

tend to be smaller than the ones given in the standard table of the 

KS test Lilliefors [3]. The main variation with the KS test, the 

parameters for LF test are estimated based on the sample. 

Therefore, in this situation, the LF test will be preferred over the 

KS test Oztuna [4].The test statistic is defined as: 

K − S = 𝑚𝑎𝑥𝑥|F ∗ (X) − Sn(X)| 

Where(Sn(X)) is the sample cumulative distribution function and 

(F ∗ (X)) is the cumulative distribution function (CDF) of the null 

distribution. Even though the LF statistic is the same as the KS 

statistic, the table for the critical values is different which leads to 

a different conclusion about the normality of a data Mendes & 

Pala [5]. The normality hypothesis of the data is then rejected for 

large values of K–S. 

2.1.2 Anderson-Darling Test Statistic 

     Anderson-Darling (AD) test is a modification of the Cramer-

von Mises (CVM) test. It differs from the CVM test in such a way 

that it gives more weight to the tails of the distribution [5]. 

Anderson and Darling [7] defined the statistic for this test as, 

AD =  n ∫[𝐹𝑛(𝑥) − F
∗(x)]2

∞

−∞

  (F∗(𝑥))𝑑(F∗(x) 

where 𝐹𝑛(𝑥) ia the empirical distribution function (EDP) ,F∗(x)is 

the cumulative distribution function of the standard normal 

distribution and ψ(x) is a weight function given by 

(𝑥)=[F∗(x) − (1 − F∗(x))]-1. To make the computation of this 

statistic easier, the following formula can be applied Anderson 

and Darling [8], 
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AD = −𝑛 −
1

𝑛
∑(2𝑖 − 1)[(ln(𝑝𝑖) + ln(1 − (𝑝𝑛+1−𝑖)]

𝑛

𝑖=1

 

 

Where the 𝑝𝑖values are given by 𝜑(𝑧(𝑖)) , 𝑧𝑖 = (𝑥𝑖 − 𝑥̅)/𝑠.This 

study used the following modified AD statistic to increase its 

power  given by Stephens [9]  which takes into accounts the 

sample size n, 

AD∗  =  AD (1 +
0.75

𝑛
+ 
2.25

𝑛2
) 

The normality hypothesis of the data is then rejected for large 

values of the test statistic. 

2.1.3 The Zhang-Wu Test Statistic 

     Zhang and Wu [10] introduced a new class of EDF test 

statistics 𝑍𝑐 and  ZA of the general form 

Z = ∫ 2n{Fn(x) ln (
Fn(x)

Fo(x)
)

∞

−∞

+ (1 −  Fn(x)) ln [
(1 − Fn(x))

(1 − Fo(x))
]}  dw(x) 

Where Fo(x) is a hypothetical distribution function completely 

specified and w(x) is a weight function. If dw(x) is considered to 

be [1/Fo(x)]. [1/(1- Fo(x))]dFo(x) and Fo(x)is  (x) , the test 

statistic is obtained by 

 ZC = ∑[ln
(1/(z(i)) − 1

(n − 0.5) /(i − 0.75) − 1
]

2n

i=1

 

In the case where dw(x) is considered to be [1/Fn(x)]. [1/(1-

Fn(x))]dFn(x) the test statistic ZA is the obtained by 

 ZA = − ∑[
ln(z(i))

n − i + 0.5
+
ln[1 −(z(i))]

i − 0.5
]

n

i=1
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For both tests, the normality hypothesis of the data is rejected for 

large values of the test statistic. 

2.1.4 The Glen–Leemis–Barr test Statistic 

     Glen, Leemis and Barr [42] suggested a test statistic based on 

the quintiles of the order statistics. This test statistic included in 

this category because of the relation between the order statistics 

and the EDF. The Glen–Leemis–Barr test statistic 𝑃𝑆 is given by 

𝑃𝑆 = −𝑛 −
1

𝑛
∑[(2𝑛 + 1 − 2𝑖) ln(𝑝(𝑖))

𝑛

𝑖=1

+ (2𝑖 − 1) ln(1 − 𝑝(𝑖))], 

where 𝑝(𝑖) are the elements of the vector 𝑝 containing the 

quintiles of the order statistics sorted in ascending order. The 

elements of 𝑝 can be obtained by defining vector 𝑢 with elements 

sorted in ascending order and given by 𝑢𝑖 = 𝛷 (𝑧(𝑖)) [11]. 

Considering that 𝑢1, 𝑢2, . . . , 𝑢𝑛 represent the order statistics of a 

sample taken from a uniform distribution U(0;1), their  quantiles, 

which correspond to the elements of 𝑝, can be determined 

knowing that 𝑢𝑖 follows a Beta distribution B(𝑖; 𝑛 − 𝑖 + 1). The 

normality hypothesis of the data is rejected for large values of the 

test statistic. 

2.2. Tests using moments 

     Karl Pearson is credited with having been the first to recognize 

that deviations in distribution from the normal could, for the most 

part, be characterized by differences in the third and fourth 

standardized moments. It follows naturally that formal testing for 

normality could be accomplished by evaluating sample moments 

and comparing them to theoretical moments. This required 

knowledge of the distribution of the sample moments under 

normality Thode, [12].  
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2.2.1 D’Agostino-Pearson Test Statistic  

     D’Agostino and Pearson [13] suggested test statistic by 

combines normalizing transformations of skewness and kurtosis, 

Z(√b1)and Z(b2). The test statistics is given by 

𝐾2 = [(Z(√β1)]
2
+[(Z(β2 )]

2 

where the transformed skewness Z(√β1) is obtained by  

 

Z(√β1) =
ln(

Y

c
+ √(Y c)2+1⁄ )

√ln(w)
,                        (1)        

 

where  

Y = √β1 . √
(n+1)(n+3)

6(n−2)
; w2 = −1 + √2𝛿 − 1, 

δ =
3(n2+27n−70)(n+1)(n+3)

(n−2)(n+5)(n+7)(n+9)
  ;  c = √

2

(w2−1)
, 

and the transformed kurtosis Z(β2 )is obtained by 

Z(β2) = [(1 −
2

9A
) − √

1 − 2/A

1 + y√2 (A⁄ − 4)

3
]√
9A

2
 

with  

 

A = 6 +
8

√τ
(
2

√τ
+√1 +

4

τ
),   

 

√τ =
6(n2 − 5n + 2)

(n + 7)(n + 9)
√
6(n + 3)(n + 5)

n((n − 2)(n − 3)
 

and 
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y =
β2 − 3(n − 1)/(n + 1)

24n(n − 2)(n − 3)/[(n + 1)2(n + 3)(n + 5)]
 

 

 

The test statistic follows approximately a chi-square distribution 

with 2 degree of freedom when a population in normally 

distributed [14]. The normality hypothesis of the data is rejected 

for large values of the test statistic. 

2.2.2 Jarque-Bera Test Statistic 

     In the field of economics, the Jarque–Bera test is a popular 

goodness-of-fit test. It has been first proposed by Bowman and 

Shenton [14] but is mostly known from the proposal of  Jarque 

and Bera [15]. The Lagrange multiplier procedure on the Pearson 

family of distributions is used to obtain tests for normality. The 

test statistic is given as: 

JB =  n [
β1
6
+ 
 (β2 − 3)

2

24
] 

The JB statistic is asymptotically chi-squared distributed with two 

degrees of freedom [14]. The normality hypothesis of the data is 

rejected for large values of the test statistic 

2.2.3 The Doornik–Hansen Test Statistic 

     In order to increase its efficiency various modifications of the 

Jarque–Bera test have been proposed over the years. A known 

formulation is that of Doornik and Hansen [16], which suggests 

the use of the transformed skewness according to Equation (1) 

and the use of a transformed kurtosis according to the proposal in 

[17]. The statistic of the Doornik–Hansen test DH is thus given 

by 

     𝐷𝐻 = [𝑍(√𝑏1)]
2
+ [𝑍2]

2 

in which the transformed kurtosis𝑍2 is obtained by  
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𝑍2 = [(


2𝑎
)

1

3

− 1 +
1

9𝑎
] (9𝑎)

1

2 

With  and a obtained by 

 = (𝑏2 − 1 − 𝑏1)2𝑘  ; 

 

𝑘 =
(𝑛 + 5)(𝑛 + 7)(𝑛3 + 37𝑛2 + 11𝑛 − 313)

12(𝑛 − 3)(𝑛 + 1)(𝑛2 + 15𝑛 − 4)
, 

and   

𝑎

=
(𝑛 + 5)(𝑛 + 7)[𝑛2 + 27𝑛 − 70] + 𝑏1(𝑛 − 7)(𝑛

2 + 2𝑛 − 5)

6(𝑛 − 3)(𝑛 + 1)(𝑛2 + 15𝑛 − 4)
 

According to [16] DH is also approximately chi-squared 

distributed with two degrees of freedom. and the normality 

hypothesis of the data is rejected for large values of the test 

statistic. 

2.2.4 The Gel–Gastwirth robust Jarque–Bera Test Statistic 

     Gel and Gastwirth [18] suggested a robust version of the 

Jarque–Bera test. Since the sample moments are, among other 

things, known to be sensitive to outliers, Gel and Gastwirth have 

proposed a modification of JB that uses a robust estimate of the 

dispersion in the skewness and kurtosis. definitions. The selected 

robust dispersion measure is the average absolute deviation from 

the median and leads to the following statistic of the robust 

Jarque–Bera test RJB given by 

𝑅𝐽𝐵 =
𝑛

6
(
𝜇3

𝑗𝑛
3)

2

+
𝑛

64
(
𝜇4
𝑗𝑛4
− 3)

2

 

with 𝐽𝑛 obtained by 
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𝑗𝑛 =
√𝜋 2⁄

𝑛
∑|𝑥𝑖 −𝑀|

𝑛

𝑖=1

 

In which M is the sample median. The normality hypothesis of 

the data is rejected for large values of the test statistic and, 

according to Gel and Gastwirth [18], RJB asymptotically follows 

the chi-square distribution with two degrees of freedom. 

2.2.5 The Hosking L-moments Based Test Statistic 

     Hosking [19] suggested the use of linear combinations of the 

order statistics instead of central moments, termed L-moments, 

which are less affected by sample variability and, therefore, are 

more powerful to outliers and better for making inferences about 

an underlying probability distribution. Hosking has shown that 

the 𝑟𝑡ℎ order sample L-moment can be estimated by 

𝐼𝑟 = ∑ 𝑝𝑟−1,𝑘 
∗ . 𝑏𝑘    ,

𝑟−1

𝐾=𝑂

 

where 𝑝𝑟−1,𝑘 
∗  and 𝑏𝑘 are obtained by 

𝑝𝑟−1,𝑘 
∗ = (−1)𝑟−𝑘 (

𝑟

𝑘
) (
𝑟 + 𝑘

𝑘
) 

𝑏𝑘 = 𝑛
−1∑

(𝑖 − 1)(𝑖 − 2)… (𝑖 − 𝑘)

(𝑛 − 1)(𝑛 − 2)… (𝑛 − 𝑘)

𝑛

𝑖=1

(𝑥𝑖) 

     Hosking [19] defined a new measures of skewness and 

kurtosis, termed L-skewness τ3and L-kurtosis τ4, based on the 

second, third and fourth sample L-moments, which have 

similarities with the corresponding central moments. The new 

measures of skewness and kurtosis according to Hosking [19] 

defined as 

τ3 =
𝐼3

𝐼2
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   τ4 =
𝐼4

𝐼2
 

The value of τ3 is bounded between −1 and 1 for all distributions 

and is close to zero for the normal distribution, while the value of 

τ4 is ≤ 1 for all distributions and is close to 0.1226 for the normal 

distribution and Hosking [19]  has suggested that normality could 

be tested based on τ3 and τ4 according to the following statistic  

𝑇𝐿𝑚𝑜𝑚 =
τ3 − µτ3
𝑉𝑎𝑟(τ3)

+
τ4−µτ4
𝑉𝑎𝑟(τ4)

                         (2) 

where µτ3 and µτ4 are the mean of τ3and τ4, and 𝑉𝑎𝑟(τ3) and 

𝑉𝑎𝑟(τ4) are their correspondingvariances. The values ofµτ3, µτ4, 

𝑉𝑎𝑟(τ3)  and 𝑉𝑎𝑟(τ4) can be obtained by simulation. 

Nonetheless,µτ3 and µτ4 are expected to be close to 0 and 0.1226 

respectively. Hosking [19] provides an approximation 

for 𝑉𝑎𝑟(τ3). The normalityhypothesis of the data is rejected for 

large values of 𝑇𝐿𝑚𝑜𝑚, which is also approximately chi-

squareddistributed with two degrees of freedom according to 

[20]. 

2.2.6 The Hosking test based on trimmed L-moments Test 

Statistic 

     Although L-moments show some robustness towards outliers 

in the data, as previously referred, they may still be affected by 

extreme observations Elamir and Seheult [21]. A robust 

generalization of the sample L-moments has therefore, been 

formulated by Elamir and Seheult [21].and that leading to the 

development of trimmed L-moments. The suggested formulation 

for the trimmed L-moments allows for both symmetric and 

asymmetric trimming of the smallest and largest sample 

observations.  
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     Considering an integer symmetric trimming level 𝑡 ,Elamir 

and Seheult [21]. have shown that the 𝑟th order sample trimmed 

L-moment 𝑙𝑟
(𝑡)

can be estimated by 

 𝑙𝑟
(𝑡)
=
1

𝑟
∑ {

∑ [(−1)𝑘(𝑟−1
𝑘
)( 𝑖−1
𝑟+𝑡−1−𝑘

)(𝑛−𝑖
𝑡+𝑘
)]𝑟−1

𝑘=0

( 𝑛
𝑟+2𝑡

)
}

𝑛−𝑡

𝑖=𝑡+1

(𝑥𝑖) 

Elamir and Seheult [21] also define new measures of skewness 

and kurtosis Based on the second, third and fourth sample 

trimmed L-moments, termed TL-skewness 𝜏3
(t) 

 and TL-

kurtosis 𝜏4
(t) 

, given by 

 𝜏3
(t) 
=

     𝑙3
(𝑡)

     𝑙2
(𝑡) , 

and    

        𝜏4
(t) 
=

     𝑙4
(𝑡)

     𝑙2
(𝑡) 

     Based on these new measures and similar to the statistic given 

by Eq (2), the following statistic is considered, 

 𝑇𝐿𝑚𝑜𝑚
(t) 

=
     𝜏3

(t) 
−      𝜇τ3

(t) 

𝑉𝑎𝑟( 𝜏3
(t) 
)

+
     𝜏4

(t) 
−      𝜇τ4

(t) 

𝑉𝑎𝑟( 𝜏4
(t) 
)

 , 

where, for a selected trimming level t ,  𝜇τ3
(t) 

and 𝜇τ4
(t) 

are the mean 

of  𝜏3
(t) 

and 𝜏4
(t) 

and 𝑉𝑎𝑟( 𝜏3
(t) 
)and 𝑉𝑎𝑟( 𝜏4

(t) 
) are their 

corresponding variances. As for the previous test, the values of 

  𝜇τ3
(t) 

,  𝜇τ4
(t) 

,𝑉𝑎𝑟( 𝜏3
(t) 
) and 𝑉𝑎𝑟( 𝜏4

(t) 
)can be obtained by 

simulation. In this study three versions of this test are considered, 

which correspond to symmetric trimming levels of 1, 2 and 3. For 

each test, the normality hypothesis of the data is rejected for large 

values of the statistic  𝑇𝐿𝑚𝑜𝑚
(t) 

 . 
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2.2.7 Bontemps-Meddahi Tests Statistics 

     Bontemps and Meddahi [22] have suggested a family of 

normality tests based on moment conditions known as Stein 

equations and their relation with Hermit polynomials. By using 

the generalized method of moments approach associated with 

Hermite polynomials the test statistics are developed, which leads 

to test statistics that are robust against parameter uncertainty. The 

general model of the test family is thus given by 

𝐵𝑀3−𝑝 =∑{
1

√𝑛
∑𝐻𝑘(𝑍𝑖)

𝑛

𝑖=1

}

𝑝

𝑘=3

2

, 

where 𝑧= (𝑥𝑖 − 𝑥̅)/𝑠 and 𝐻𝑘(. )represents the 𝑘𝑡ℎ order 

normalized Hermite polynomial. The general expression given by  

∀𝑖 > 1,   𝐻𝑖(𝜇) =
1

√𝑖
[𝜇 . 𝐻𝑖−1(𝜇) − √𝑖 − 1𝐻𝑖−2(𝜇)]   , 𝐻𝑜(𝜇)

= 1,   𝐻1(𝜇) = 𝜇  (3) 

Different tests can be obtained by assigning different values of 𝑝, 

which represents the maximum order of the considered 

normalized Hermite polynomials in the expression above. In this 

study two different tests are considered in this work with 𝑝 = 4 

and 𝑝 = 6 ; these tests are termed 𝐵𝑀3−4 and 𝐵𝑀3−6 respectively. 

According to Bontemps and Meddahi [22]; the general 𝐵𝑀3−𝑝 

family of tests asymptotically follows the chi-square distribution 

with 𝑝− 2 degree of freedom and the hypothesis of normality is 

rejected for large values of the test statistic. 

2.2.8 The Brys–Hubert–Struyf MC–LR Test Statistic 

     Brys, Hubert and Struyf [23] have suggested a test statistic 

based on robust measures of skewness and tail weight. The robust 

measure of skewness is the medcouple MC [24,25] defined as 
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MC = med
𝑥(𝑖)≤𝑚𝐹≤𝑥(𝑗)

ℎ(𝑥(𝑖), 𝑥(𝑗) 

Where med stands for the median, 𝑚𝐹 is the sample median and 

the kernel function ℎ is given by 

ℎ(𝑥(𝑖), 𝑥(𝑗)) =
(𝑥(𝑖) − 𝑚𝑓) − (𝑚𝑓 − 𝑥(𝑗))

𝑥(𝑖) − 𝑥(𝑗)
 

For the case where𝑥(𝑖) = 𝑥(𝑗)= 𝑚𝑓 , ℎis then set by 

ℎ(𝑥(𝑖), 𝑥(𝑗)) =  { 

   1        𝑖 > 𝑗
  0       𝑖 = 𝑗
−1      𝑖 < 𝑗

 

The left medcouple (LMC) and the right medcouple (RMC) are 

the considered robust measures of left and right tail weight [26], 

respectively, and are defined by 

LMC = −MC(𝑥 < 𝑚𝑓) 𝑎𝑛𝑑 RMC = MC(𝑥 > 𝑚𝑓), 

The test statistic 𝑇𝑀𝐶−𝐿𝑅 is then defined by 

       𝑇𝑀𝐶−𝐿𝑅 = 𝑛(𝜔 − ώ)
𝑡. 𝑉−1. (𝜔 − ώ) 

in which 𝜔 is set as [𝑀𝐶, 𝐿𝑀𝐶, 𝑅𝑀𝐶]𝑡 , and 𝜔 and V are obtained 

based on the influence function of the estimators in 𝜔 [25,26]. For 

the case of a normal distribution, 𝜔 and V are defined as [23]  

𝜔 = [0,0.199,0.199]𝑡 ;  𝑉 = [
1.25 0.323 −0.323
0.323 2.62 −0.0123
−0.323 −0.0123 2.62

] 

     According to Brys, Hubert and Struyf [23], it is suggested that 

𝑇𝑀𝐶−𝐿𝑅 approximately follows the chi-square distribution with 

three degrees of freedom and the normality hypothesis of the data 

is rejected for large values of test statistic. 

2.2.9 Bonett-Seier Test Statistic  

     Bonett and Seier [27] have introduced a modified measure of 

kurtosis for testing normality, which is based on a modification 
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of aproposal by Geary [28]. The test statistic of the new kurtosis 

measure 𝑇𝑤 is thus given by: 

     𝑇𝑤 = 
√𝑛 + 2 .  (∈ −3)

3.54
 

where 

  ∈= 13.29 [ln√𝛽2 − ln(𝑛
−1∑ |𝑥𝑖 − 𝑥̅|

𝑛
𝑖=1 )] 

 

     The normality hypothesis is rejected for both small and large 

values of 𝑇𝑤using a two sided test [27], it is suggested that 

𝑇𝑤 approximately follows a standard normal distribution. 

2.2.10 The Cabaña-Cabaña Test Statistic 

     Cabaña and Cabaña [29] have suggested four families of 

normality tests based on transformed empirical processes. Two 

tests families are of the Kolmogorov–Smirnov type while the 

other two are of the Cramér–von Mises type. One family of each 

type of test focuses on changes on skewness and the other one is 

sensitive to changes in kurtosis. According to Cabaña and Cabaña 

[29], the power of the Kolmogorov–Smirnov type tests is seen to 

be very similar to that of the Cramér–von Mises type tests. 

Therefore, only the Kolmogorov–Smirnov type tests were 

selected in this study, as their implementation complexity is 

relatively lower than that of the Cramér–von Mises type tests. 

     Based on the definition of approximate transformed estimated 

empirical processes (ATEEP) sensitive to changes in skewness or 

kurtosis the test statistics introduced The proposed ATEEP 

sensitive to changes in skewness is defined as: 

 𝜔𝑠&𝑙(𝑥) = ф(𝑥) . 𝐻3 − ф(𝑥) .∑
1

√𝑗

𝑙

𝑗=1

𝐻𝐽−1(𝑥) . 𝐻𝑗+3 
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where 𝑙 is a dimensionality parameter, ф(x) is the probability 

density function of the standard normal distribution, Hj (·) 

represents the 𝑗th order normalized Hermite polynomial given by 

Equation (3) and 𝐻𝑗 is the 𝑗th order normalized mean of the 

Hermite polynomial defined as 

𝐻𝑗 =
1

√𝑛
∑𝐻𝑗(𝑥𝑖)

𝑛

𝑖=1

 

The proposed ATEEP sensitive to changes in kurtosis is defined 

as: 

𝝎𝒌&𝑙(𝒙) = −ф(𝒙) .𝑯𝟑 + [ф(𝒙) − 𝒙. ф(𝒙)].𝑯𝟒

− ф(𝒙) .∑(√
𝒋

𝒋 − 𝟏
𝑯𝒋−𝟐(𝒙) . 𝑯𝒋(𝒙))

𝒍

𝒋=𝟐

. 𝑯𝒋+𝟑 

According to Cabaña and Cabaña [29], the dimensionality 

parameter 𝑙 ensures that the test is consistent against alternative 

distributions differing from the normal distribution having the 

same mean and variance in at least one moment of order not 

greater than 𝑙 + 3. The Kolmogorov–Smirnov type test statistics 

sensitive to changes in skewness and in kurtosis, 𝑇𝑠&𝑙and 𝑇𝐾&𝑙 

respectively, are defined as 

𝑇𝑠&𝑙 = max|𝝎𝒔&𝑙(𝒙)|    𝑎𝑛𝑑    𝑇𝑘&𝑙 = max|𝝎𝒌&𝑙(𝒙)|. 

According to Cabaña and Cabaña [29], For both cases, the 

normality hypothesis of the data is rejected for large values of the 

test statistic.  

2.2.11 Desgagn_e-Lafaye-de-Micheaux omnibus and 

directional Test Statistic 
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     Desgagné and Lafaye de Micheaux [30] introduced two types 

of test statistics. The. The first test is based on 2nd-power 

skewness and kurtosis, which are interesting alternatives to the 

classical Pearson’s skewness and kurtosis, called 3rd-power 

skewness and 4th-power kurtosis. This test is based on the 

dependency between 𝐵2 and 𝐾2 in small samples, because the 

𝜒2distribution results from sum of squares of two independent 

standard normal. The proposed statistic to test the composite 

hypothesis of normality, for finite sample sizes 𝑛 ≥  10, is 

denoted by 𝑍𝐴𝑃𝐷 and given by 

  𝑍𝐴𝑃𝐷 = 𝑍
2(𝐵2) + 𝑍

2(𝐾2 − 𝐵2
2), 

where 𝑍(𝐵2) =
𝑛
1
2⁄ 𝐵2

[(3− 8 ⁄ )(1−1.9/𝑛)]1 2⁄   , 

𝑍(𝐾2 − 𝐵2
2)

=  
𝑛1 2⁄ [((𝐾2 − 𝐵2

2)1 3⁄ ) − ((2 − log 2 − )/2)
1 3⁄
(1 − 1.026/𝑛)]

[72−1((2 − log 2 − )/2)
−4 3⁄

(32 − 28 )(1 − 2.25/𝑛.8)]
1 2⁄

 

 

𝐵2 =
1

𝑛
∑𝑍𝑖

2 𝑠𝑖𝑔𝑛(𝑍𝑖

𝑛

𝑖=1

), 

𝐾2 =
1

𝑛
∑ 𝑍𝑖

2 𝑙𝑜𝑔|𝑍𝑖|
𝑛
𝑖=1 ,                                 (4) 

and                            = −(1) = 0.577215665                    (5) 

 

The null hypothesis is rejected if  𝑋𝐴𝑃𝐷 is larger than the chi-

squared quantile 𝜒2,α
2  at a significance level of α. 

     Second test introduced by Desgagné and Lafaye de Micheaux 

[30] when it is known that the distribution of the random variable 
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is symmetric by using a directional test and thus increasing the 

power. Consider a directional test based on sample 2nd-power 

kurtosis. To test the composite hypothesis of normality, for finite 

sample sizes 𝑛 ≥  10, is denoted by 𝑧EPD and given by 

       𝑍EPD =
𝑛1 2⁄ [

((2𝐾2)
𝛼𝑛−1)

𝛼𝑛
+
(2−log2−)−0.06−1

0.06
 + (1.23/𝑛.95)]

[
(2−log2−)−2.12(32−28 )

2
− (3.78/𝑛0.733)]

1 2⁄
 

where 𝐾2 and  is given in equation (4), (5) and 

𝛼𝑛 = −0.06 + 2.1/𝑛0.67 

The directional test follows a normal distribution with N( 0,1) 

(Desgagné and Lafaye de Micheaux [30]  .The null hypothesis is 

rejected if |ZEPD | is larger than the normal quintile 𝑍𝛼 2⁄ , at a 

significance level of 𝛼. 

 

2.3 Tests based on Regression and correlation  

     . Regression or correlation tests are based on measures of 

linear correlation in probability plots. In contrast to probability 

plots, regression tests are formal procedures which can be used to 

objectively assess normality. However, the features of a set of 

data which cause the non-normality cannot be determined solely 

on the basis of the test. It is therefore recommended that a test for 

normality, be it regression test or other type of test, be done in 

conjunction with a raw data plot and a probability plot. 

2.3.1 Shapiro-Wilk Test Statistic 

     Shapiro and Wilk [31] test was originally restricted for sample 

size of less than 50. This test was the first test that was able to 
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detect departures from normality due to either skewness or 

kurtosis, or both Althouse [32].  

If a set of observations  𝑥𝑖 come from a normal distribution, then 

on a normal probability plot 

 𝑥𝑖 = 𝜇 + 𝜎𝑧𝑖 

If we denote the expected value of the 𝑖th order statistic by E( 𝑥(𝑖)) 

=  𝑤𝑖 and V is the covariance matrix of the order statistics , 

𝑥(1), 𝑥(2),… , 𝑥(𝑛(, then the best linear unbiased estimate of 𝜎 is 

obtained from the generalized least squares regression of the 

sample order statistics on their expected values, which is (up to a 

constant) 

𝑏 = 𝑎𝑥 

The original Shapiro-Wilk test statistic [31] is defined as, 

𝑊 =
𝐾𝜎2

(𝑛 − 1)𝑠2
=
( ∑   𝑎𝑖𝑥(𝑖) )

𝑛
𝑖=1

2

∑ (𝑥𝑖 − 𝑥̅)2
𝑛
𝑖=1

, 

where𝑥(𝑖)is the 𝑖𝑡ℎ  order statistic, 𝑥̅ is the sample mean, 

𝑎𝑖 =
𝑚 𝑉−1

(𝑚𝑉−1𝑉−1𝑚)1 2⁄
 

in which m and V are the mean vector and covariance matrix of 

the order statistics of the standard normal distribution.  

       The value of W lies between zero and one. Small values of 

W lead to the rejection of normality whereas a value of one 

indicates normality of the data. SW test was modified by Royston 

[33] to broaden the restriction of the sample size to 2000 and 

algorithm AS181 was then provided [34]. Later, Royston [35] 

observed that Shapiro-Wilk’s approximation for the weights a 

used in the algorithms was in adequate for n >  50 . He then gave 
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an improved approximation to the weights and provided 

algorithm AS R94 Royston [35] which can be used for any n in 

the range 3 ≤  𝑛 ≤  5000. This study used the algorithm AS 

R94 Royston [35]. 

2.3.2 Shapiro-Francia Test Statistic  

    Since explicit values of m and V are not readily available and 

the computation of 𝑽−𝟏 is time consuming for large samples, 

Shapiro and Francia [36] suggested an approximation to the 

Shapiro-Wilk W-test. Let 𝑥1,𝑥2, 𝑥3,….,𝑥𝑛be a random sample to be 

tested for departure from normality, ordered 𝑥(1) < 𝑥(2) < ⋯ <

𝑥(𝑛), and let m' denote the vector of expected values of standard 

normal order statistics. The test statistic is defined as: 

𝑊′ =
[∑ 𝑚𝑖 𝑥𝑖

𝑛
𝑖=1 ]2

[∑ 𝑚𝑖
2𝑛

𝑖=1 ][∑ (𝑥𝑖 − 𝑥̅)2
𝑛
𝑖=1 ]

 

The 𝑊′ equals the product-moment correlation coefficient 

between the  𝑥𝑖and the 𝑚𝑖, and therefore measures the 

straightness of the normal probability plot  𝑥𝑖; small values of W' 

indicate non-normality. 

Shapiro-Francia test is particularly useful than the Shapiro-Wilk 

test especially for large samples where explicit values of m and V 

utilized in the Shapiro-Wilk test are not readily available and the 

computation of 𝑽−𝟏 is time consuming. The normality hypothesis 

of the data is rejected for small values of the test. 

2.3.3 The Rahman-Govindarajulu modification of the 

Shapiro–Wilk Test Statistic 

      Rahman and Govindarajulu [37] have proposed a 

modification to the Shapiro–Wilk test, here on termed 𝑊𝑅𝐺. 
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According to these proposals, each element 𝑎𝑖of the new vector 

of weights becomes 

𝑎𝑖 = −(n + 1)(𝑛 + 2)ф(𝑚𝑖)[𝑚𝑖−1ф(𝑚𝑖−1) − 2𝑚𝑖ф(𝑚𝑖)

+ 𝑚𝑖+1ф(𝑚𝑖+1)] 

where it is assumed that m0ф(m0) = mn+1ф(mn+1) = 0. with this 

modification, the new test statistic 𝑊𝑅𝐺 assigns larger weights to 

the extreme order statistics than the original W test, which has 

been seen to result in higher power against short tailed alternative 

distributions Rahman and Govindarajulu [37].The normality 

hypothesis of the data is rejected for small values of 𝑊𝑅𝐺 . 

2.3.4 The Filliben correlation Test Statistic 

     Filliben [38] described the probability plot correlation 

coefficient r as a test for normality. The correlation coefficient is 

defined between the sample order statistics and the estimated 

median values of the theoretical order statistics. 

Considering that 𝑚1,𝑚2, . . . ,𝑚𝑛represent the estimated median 

values of the order statistics from a uniform distribution U(0;1), 

each 𝑚𝑖 is obtained by 

 𝑚𝑖 =

{
 
 

 
 1 − 0.05(

1
𝑛⁄ )            𝑖 = 1            

(𝑖 − 0.3172)

(𝑛 + 0.365)
         1 < 𝑖 < 𝑛

0.05(
1
𝑛⁄ )                𝑖 = 𝑛        

 

Upon which the estimated median values of the theoretical order 

statistics can be obtained using the transformation 𝑀(𝑖) =

 𝛷−1(𝑚(𝑖)) The correlation coefficient r is then defined as 
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𝑟 =
∑ 𝑥(𝑗)  𝑀(𝑗)
𝑛
𝑖=1

√∑ 𝑀(𝑖)
2𝑛

𝑖=1   √(𝑛 − 1) . 𝑠2 .

 

Leading to the rejection of the normality hypothesis of the data 

for small values of 𝑟. 

2.3.5 The Chen–Shapiro Test Statistic 

     Chen and Shapiro [39] introduced an alternative test statistic 

CS based on normalized spacings and defined as 

CS =
1

(𝑛 − 1) 𝑠
∑

𝑥(𝑖+1) − 𝑥(𝑖)

𝑀(𝑖+1) − 𝑀(𝑖)

𝑛=1

𝑖=1

 

in which  𝑀(𝑖)is the 𝑖th quintile of a standard normal distribution 

obtained by 

 𝑀(𝑖) = 𝛷
−1 [(𝑖 − 0.375 𝑛 + 0.25⁄ )] 

Because of a close relation between CS and the Shapiro–Wilk test 

their performance is expected to be similar also. The normality 

hypothesis of the data is rejected for small values of CS. 

2.3.6 The D’Agostino Test Statistic  

     D’Agostino [40] proposed the D test statistic as an extension 

of the Shapiro–Wilk test. The D’Agostino proposal eliminates the 

need to define the vector of weights a of the Shapiro–Wilk test 

statistic and is obtained by 

𝐷 =
∑ (𝑖 − (𝑛 + 1)/2). 𝑥(𝑖)
𝑛
𝑖=1

𝑛2. √𝜇2
 

The normality hypothesis of the data is rejected for both small 

and large values of D using a two-sided test. 
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2.3.7 The Zhang Test Statistic 

     Zhang [41] introduced the 𝑄 test statistic based on the ratio of 

two unbiased estimators of standard deviation, 𝑞1 and 𝑞2 the test 

statistic given by  

𝑄 = ln(𝑞1/𝑞2). 

where 

𝑞1 =∑𝑎𝑖𝑥(𝑖)

𝑛

𝑖=1

     ,         𝑞2 =∑𝑏𝑖𝑥(𝑖)

𝑛

𝑖=1

 

and the 𝑖th order linear coefficients 𝑎𝑖 and 𝑏𝑖 result from 

𝑎𝑖 = [(𝑢𝑖 − 𝑢1)(𝑛 − 1)]
−1, for 𝑖 ≠ 1 ; 𝑎𝑖 = ∑ 𝑎𝑖

𝑛
𝑖=2  

𝑏𝑖

= {
−𝑏𝑛−𝑖+1 = [(𝑢𝑖 − 𝑢𝑖+4)(𝑛 − 4)]

−1                     𝑖 = 1,2, … . ,4

(𝑛 − 4)−1. [(𝑢𝑖 − 𝑢𝑖+4)
−1 − (𝑢𝑖−4 − 𝑢𝑖)

−1]      𝑖 = 5,… . . , 𝑛 − 4
 

where the 𝑖th expected value of the order statistics of a standard 

normal distribution, 𝑢𝑖 , is defined by 

𝑀(𝑖) = 𝛷
−1 [(𝑖 − 0.375 𝑛 + 0.25⁄ )] 

According to Zhang [41] 𝑄 is less powerful against negatively 

skewed distributions. Therefore, Zhang  has also proposed the 

alternative statistic Q* by switching the 𝑖th order statistics 𝑥(𝑖) in 

𝑞1 and 𝑞2 by  

𝑥(𝑖)
∗ = −𝑥(𝑛−𝑖+1)  

Based on the definition of both 𝑄 and𝑄∗, the normality hypothesis 

of the data is rejected for both small and large values of the 

statistic using a two-sided test. 

     In addition to these two tests, Zhang [41] has also proposed a 

joint test 𝑄 − 𝑄∗, stemming from the fact that 𝑄 and Q∗ are 



    2021/   11/    23  Accepted DateElwahab Hagag      -Abd    Normality tests Procedure            

Scientific Journal for Economic& Commerce                             524  
  

  

 

 

 

 

 

 

 

approximately independent. Therefore, for the case of the joint 

test Q−Q∗, the normality hypothesis of the data is rejected at the 

significance level α when rejections obtained for either one of the 

two individual tests for a significance level of α/2. 

     According to Zhang [41], both Q and Q∗ approximately follow 

a normal distribution. However, Hwangand Wei [42] have proven 

otherwise and stated that the performance of these tests is better 

when based on their empirical distribution. Since the joint test has 

shown to be more powerful than the individual tests Hwangand 

Wei [42], the joint test Q−Q∗ is the primary choice for the current 

study. Nonetheless, the Q test is also included for comparison 

purposes. 

2.3.8 The del Barrio-Cuesta-Albertos-Matrán-Rodríguez-

Rodríguez quantile correlation Test Statistic 

A novel approach for normality testing, based on the L2-

Wasserstein distance, has been proposed by del Barrio, 

Cuesta- Albertos, Matránand Rodríguez-Rodríguez [43] The 

BCMR test statistics is defined by 

BCMR =
𝑚2 − [∑ 𝑥(𝑖). ∫ ɸ−1(𝑡)𝑑𝑡

𝑖
𝑛⁄

(𝑖−1)
𝑛⁄

𝑛
𝑖=1 ]

2

𝜇2
 

where, according to del Barrio, Cuesta- Albertos, Matránand 

Rodríguez- Rodríguez [43], the numerator represents the 

squared 𝐿2-Wasserstein distance. The normality hypothesis 

of the data is rejected for large values of the test statistic. 

2.3.9 The 𝜷𝟑 
𝟐 Coin Test Statistic 
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     Coin [44] has proposed a normality test based on a 

polynomial regression focused on detecting symmetric non-

normal alternative distributions. According to Coin [44], the 

analysis of standard normal Q–Q plots of different 

symmetric non-normal distributions suggests that fitting 

model of the type 

𝒵𝑖 = 𝛽1. 𝛼𝑖 + 𝛽3. 𝛼𝑖
3 

where 𝛽1 and 𝛽3 are fitting parameters and 𝛼𝑖 represent the 

expected values of standard normal order statistics, leads to 

values 𝛽3 different from zero when in presence of symmetric 

non-normal distributions. Therefore, Coin (2008) suggests 

the use of 𝛽3
2 as a statistic for testing normality thus rejecting 

the normality hypothesis of the data for large values of 𝛽3
2 . 

As suggested by Coin [44], the values of 𝛼𝑖 are obtained 

using the approximations provided by Royston [45]. 

2.4. Other tests 

     There is other tests for normality which not based on 

EDF tests or kurtosis , skewness tests or correlation and 

regretion tests. 

24.1 The Epps–Pulley Test Statistic  

     Epps and Pulley [45] have proposed a test statistic TEP 

based on the following weighted integral 

𝑇𝐸𝑃 = ∫ |𝜙𝑛(𝑡) − 𝜙̂0(𝑡)|
2
𝑑𝐺(𝑡),

∞

−∞
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where 𝜙𝑛(𝑡) is the empirical characteristic function given by 

𝜙𝑛(𝑡) = 𝑛−1∑𝑒−𝑖𝑡𝑥𝑗
𝑛

𝑗=1

 

and 𝜙̂0(𝑡) is the sample estimate of the characteristic 

function of the normal distribution given by 

𝜙̂0(𝑡) = 𝑒−𝑖𝑡𝑥̅−0.5𝑚2𝑡
2
 

and G(t) is an adequate function chosen according to several 

considerations Epps and Pulley [44]. By setting d G(t) = 

g(t)dt and selecting 

𝑔(𝑡) = √𝜇2 2𝜋⁄  . 𝑒(−0.5𝜇2𝑡
2), 

the following statistic can be obtained as 

𝑇𝐸𝑃 = 1 +
𝑛

√3
+
2

𝑛
∑∑𝑒(−(𝑥𝑗−𝑥𝑘)

2
)/(2𝜇2)

𝑘−1

𝑗=1

𝑛

𝑘=2

− √2 ∑𝑒(−(𝑥𝑗−𝑥̅)
2
)/ (4𝜇2)

𝑛

𝑗=1

 

for which the normality hypothesis of the data is rejected 

when large values of 𝑇𝐸𝑃 are obtained. To simplify the use 

of this test by eliminating the need for tables of percentage 

points of 𝑇𝐸𝑃,an approximation to the limit distribution of 

𝑇𝐸𝑃 has been presented by Henze [46]. 

2.4.2 The Martinez–Iglewicz Test Statistic 
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     Martinez and Iglewicz [48]. have proposed a normality 

test based on the ratio of two estimators of variance, where 

one of the estimators is the robust biweight scale estimator 

𝑆𝑏
2 

𝑆𝑏
2 = 

𝑛∑ (𝑥𝑖 −𝑀)
2(1 − 𝒵̃𝑖

2)
4

|𝒵̂𝑖|<1

[∑ (1 − 𝒵̃𝑖
2)(1 − 5𝒵̃𝑖

2)|𝒵̂𝑖|<1
]
2 

where M is the sample median, 𝒵̃𝑖= (𝑥𝑖−M)/(9A), with A 

being the median of |𝑥𝑖 −M|, and when|𝒵̂𝑖|> 1, 𝒵̂𝑖 is set to 0. 

The Martinez–Iglewicz test statistic then is given by 

𝐼𝑛 =
∑ (𝑥𝑖 −𝑀)

2𝑛
𝑖=1

(𝑛 − 1) . 𝑆𝑏
2  

for which the normality hypothesis of the data is rejected for 

large values of 𝐼𝑛. 

2.4.3 Gel-Miao-Gastwirth Test Statistic 

     Gel, Miao and Gastwirth. [49]. have proposed a directed 

normality test, which focuses on detecting heavier tails and 

outliers of symmetric distributions. The test is based on the 

ratio of the standard deviation and the robust measure of 

dispersion 𝑗𝑛 as defined in the expression 

𝑗𝑛 =
√𝜋 2⁄

𝑛
∑ |𝑥𝑖 −𝑀|
𝑛
𝑖=1    , 
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where M is the sample median. The test statistic is thus given 

by 

𝑅
𝑆𝐽= 

𝑆

𝑗𝑛

 

and should tend to one under a normal distribution. The 

normality hypothesis is rejected for large values of the 𝑅𝑠𝑗, 

and the statistic √𝑛  (𝑅𝑠𝑗 −  1 ) is asymptotically normally 

distributed [49]. However, it has been empirically found that 

rejecting the normality hypothesis using a two-sided test 

extends the range of application of this test, namely to light 

tailed distributions, without a significant reduction of its 

power towards heavy-tailed distributions. Given its 

enhanced behavior, the two-sided test is the primary choice 

for the current study. Nonetheless, a detailed power 

comparison of the two-sided test with the one-sided test, 

hereon termed 𝑅sJ,1, is also presented. 

2.4.4 Spiegelhalter Test Statistic  

     Using the logic that the combination of a good test for 

short tails and good test for long tails would result in a good 

test for an unspecified symmetric alternative, Spiegelhalter 

[50].  used a combination of the most powerful location and 

scale invariant (MPLSI) tests to obtain a test that would be 

useful under more general conditions. He defined a test 

statistic against symmetric alternatives as 

𝑇𝑆 =
(𝜆𝑈
∗ + 𝜆𝐷

∗ )

𝜆𝑁
∗     , 
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where                           𝜆𝑈
∗ = (𝑛2 − 𝑛)−1(𝑥(𝑛) − 𝑥(1))

−𝑛+1  ; 

𝜆𝐷
∗ = [𝛾(𝑥𝑚)𝐵𝑛]

−𝑛+1, 

And  𝑥𝑚 is the sample median,  

𝛾(𝜃̃) =  ∑|𝑥𝑖 − 𝜃̃|,

𝑛

𝑖=1

 

and for 𝑛 odd, 

𝐵𝑛 = [∑
𝛾𝑛−1(𝑥𝑚)𝛾

−𝑛+1(𝑥(𝑖))

(2𝑖 − 𝑛)(𝑛 + 2 − 2𝑖)
]

−1

𝑛−1

 

for 𝑛 even 

𝐵𝑛 = [
(𝑛 − 1)(𝑥(𝑛2) − 𝑥(𝑛1))

2𝛾(𝑥𝑚)
+ 0.5

+ ∑
𝛾𝑛−1(𝑥𝑚)𝛾

−𝑛+1(𝑥(𝑖))

(2𝑖 − 𝑛)(𝑛 + 2 − 2𝑖)
𝑖≠𝑛1,𝑛2

]

−1

𝑛−1

 

𝜆𝑁
∗ = (1 2⁄ )𝑛−

1

2𝜋−
𝑛

2
+
1

2Γ (
𝑛

2
−
1

2
) [∑(𝑥𝑖 − 𝑥̅)

2]
−
𝑛

2
+
1

2
, 

Due to the complexity of calculating λD
∗  , however, 

Spiegelhalter [50]. examined a simplified approximation of 

TS substituting Geary's test for that component, 

𝑇𝑆
` = [(𝐶𝑛𝑣)

−𝑛+1 + 𝑎(1)−𝑛+1]1/𝑛−1 
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where 

𝐶𝑛 = 
(𝑛!)

1

𝑛
−1

2𝑛
  , 

𝑣 =
𝑥𝑛 − 𝑥1
𝑠

, 

𝑎(1) = 𝛾 (𝑥̅)/ nσ̂ 

and the Geary's test statistic 𝑎 is the ratio of the mean 

deviation to standard deviation, given by 

𝑎 =∑|𝑥𝑖 − 𝑥̅|

𝑛

𝑖=1

/𝑛√𝜇2 

The normality hypothesis of the data is rejected for large 

values of the test statistic. 

3 Comparative study  
       The first part of the simulation study involved the 

generation of 10000 random samples from the standard 

normal distribution for the different sample sizes. Each 

sample generated was then tested for normality and the type 

I error rate, that is the rate of rejection of the hypothesis of 

normality of the data, was then recorded at specified 

significance level (α =  .05 ,0.1).Two levels of the 

significance were considered to investigate the effect of the 

significance level on the power of the test. The probability 

of this type I error rate of the test should be bounded upwards 

by the chosen level of significance; otherwise the test cannot 
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be used for the given purpose. On the other hand, a test with 

type I error rate far smaller or greater than the chosen α  is 

an indicative of a test with low and high power respectively.  

       In the second part of the simulation study, Monte Carlo 

procedures were used to evaluate the power of data was 

generated from several alternative non-normal distributions 

as highlight in chapter 2.These include  symmetric short and 

long tailed distributions such as Laplace(3,1) , Uniform(0,1), 

Beta(0.25,0.25) , Beta(1.5,1.5), Student-t(df=5) , Student-

t(df=8), Student- Cauchy(0,7) ; asymmetric short and long 

tailed distributions such as Beta (3,1), 𝜒2(df=5) , 𝜒2(df=15) 

, Gamma(3,4), Weibull(15,3) , Exponential(5)  

lognormal(1,1) , Gumbel(0,1).These distributions were 

selected to cover various standardized skweness √β1 and 

kurtosis β2 values. 

       The study is carried out for four sample sizes (n = 10, , 

n = 20, , n = 50, n = 100 and) and considering significance 

levels α of 0.10, 0.05.Although critical values or limiting 

distributions of the tests statistics are available for some of 

the tests considered herein, critical values for each sample 

size under consideration were, nonetheless, derived 

empirically for each test for the considered nominal 

significance levels, before carrying out the power study. 

These critical values were based on 1,0000 samples drawn 

from the standard normal distribution. In addition to the 

referred critical values, the values of 𝜇τ3, 𝜇τ4,Var(τ3) and 

Var(τ4), for the Hosking L-moments based test, and the 
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values of 𝜇τ3
(𝑡), 𝜇τ4

(𝑡)
,Var(τ3

(𝑡)
) and Var(τ4

(𝑡)
), for the Hosking 

trimmed L-moments based test, were also determined for 

each sample size by simulation from 10,000 samples drawn 

from the standard normal distribution. For the latter test, the 

parameters were obtained for each of the previously referred 

trimming levels t of 1, 2 and 3. The values resulting from 

this empirical evaluation the values of 𝜇τ3 and of 𝜇τ3
(𝑡)

 for the 

different trimming levels are very close to zero, and are 

considered to be zero in the subsequent power study. 
Table A1. Simulated power for symmetric distributions 

Distributio
n 

Tests 
Type of 

the test 
α =0.05  α =0.1 

n =10 n =20 n =50 n =100  n =10 n =20 n =50 n =100 

Laplace 

(3,1) 

 K-S 

EDF tests 

14.07 22.6 42.31 70.07 22.61 33.01 55.97 80.79 

 AD* 16.44 27.2 54.19 82.43  24.24 37.96 64.95 88.36 

 𝑍𝑐 15.58 24.68 45.8 69.44  21.79 32.05 54.01 76.66 

 

𝑍𝐴 17.12 25.89 45.16 68.2  25.73 36.36 57.15 78.31 

𝑃𝑆 16.53 27.47 54.84 83.09  24.51 38.46 65.32 88.67 

𝐾2 

Moment 

tests 

18.96 29.1 49.7 71.62  27.47 39.63 60.63 81.39 

JB 18.75 30.82 56.11 80.28  27.69 41.3 65.94 85.85 

𝐷𝐻 19.01 32.05 57.53 80.26  27.7 41.58 67.97 87.70 

RJB 20.83 36.47 66.4 89.09  30.1 47.71 75.76 93.58 

𝑇𝐿𝑚𝑜𝑚 20.08 32.96 61.80 86.8  27.75 42.45 70.77 91.48 

𝑇𝐿𝑚𝑜𝑚
(1)

 11.39 20.16 41.39 71.09  18.02 28.94 52.14 78.96 

𝑇𝐿𝑚𝑜𝑚
(2)

 6.67 13.38 29.53 54.02  12.89 20.92 39.16 63.88 

𝑇𝐿𝑚𝑜𝑚
(3)

 
4.99 10.18 22.01 41.54 

 
9.810 16.81 31.37 51.91 

𝐵𝑀3−4 18.79 30.7 56.06 80.19  27.83 41.15 65.88 85.84 

𝐵𝑀3−6 19.05 32.45 60.53 83.96  27.59 40.98 69.76 90.06 

𝑇𝑀𝐶−𝐿𝑅 4.77 5.62 6.990 11.98  9.370 11.54 14.56 21.1 

𝑇𝑤 13.56 28.35 63.51 90.57  20.50 38.23 71.99 94.39 

𝑇𝑀𝐶−𝐿𝑅
− 𝑇𝑤 10.64 21.66 50.47 83.09 

 

16.31 29.15 59.06 87.66 

𝑇𝑠&5 18.21 27.12 41.91 56.86  26.84 36.99 53.45 68.55 

𝑇𝑘&5 11.93 29.17 60.5 85.04  15.83 34.35 67.67 90.3 

𝑍APD  16.92 31.59 61.37 86.85  25.9 42.52 70.73 91.63 

𝑍EPD  14.75 28.74 61.46 89.12  21.67 38.17 71.26 93.15 

𝑊 R 

and D 
tests 

15.71 26.23 52.51 79.32  22.93 35.42 62.07 86.13 

W' 18.84 31.73 59.29 84.00  26.68 41.67 69.63 89.8 

𝑊𝑅𝐺 11.95 15.55 25.97 49.01  17.34 21.55 33.58 57.89 
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𝐷 15.11 28.64 61.12 87.62  23.08 38.24 70.4 92.4 

𝑟 19.06 32.44 60.27 84.73  27.1 42.43 70.44 90.29 

𝑐𝑠 15.66 24.98 48.3 75.55  22.8 33.91 57.9 82.38 

𝑄 12.63 18.36 27.63 37.06  19.45 26.52 37.24 46.59 

Q−Q∗ 12.86 17.17 27.28 36.57  20.25 25.85 35.89 46.33 

BCMR 16.73 27.89 54.44 80.51  24.39 37.72 64.05 87.15 

𝛽3
2 16.52 30.25 61.7 86.21  23.67 38.84 69.67 90.87 

𝑇𝐸𝑃 

Other 

tests 

16.89 25.99 51.23 78.74  24.84 36.62 62.61 86.52 

𝐼𝑛 19.25 37.34 69.04 91.26  30.23 48.28 77.36 94.63 

𝑅𝑠𝑗 20.71 38.98 73.04 94.5  30.58 50.45 82.81 97.18 

 𝑇𝑆
` 13.8 29.61 69.5 94.38  20.92 40.07 79.86 97.05 

 

 

Table A2. Simulated power for symmetric distributions 

Distribut

ion 
Tests 

Type of 
the test 

α =0.05  α =0.1 

n =10 n =20 n =50 n =100  n =10 n =20 n =50 n =100 

Uniform 

(0,1) 

 K-S 

EDF 

tests 

5.87 10.34 24.59 58.1 12.24 19.75 41.11 75.96 

 AD* 7.31 17.28 55.92 94.9  15.22 30.5 72.34 98 

 𝑍𝑐 8.91 23.33 83.14 99.96  18.92 42.23 93.69 100 

 

𝑍𝐴 5 13.79 78.91 99.95  11.69 28.49 89.83 99.98 

𝑃𝑆 6.93 16.9 56.5 95.22  14.91 30.09 72.63 98.06 

𝐾2 

Momen

t 

tests 

2.52 14.68 77.96 99.67  8.19 29.34 88.32 99.91 

JB 1.83 0.38 1.56 77.19  4.5 3.96 52.13 98.31 

𝐷𝐻 6.4 10.52 47.07 95  11.68 20.55 69.12 98.94 

RJB 1.6 0.24 0.01 1.21  3.74 0.93 0.14 74.18 

𝑇𝐿𝑚𝑜𝑚 5.7 20.12 70.08 97.62  14.37 34.09 81.3 99.02 

𝑇𝐿𝑚𝑜𝑚
(1)

 3.19 6.47 25.24 59.26  7.88 15.83 39.05 71.35 

𝑇𝐿𝑚𝑜𝑚
(2)

 3.84 4.32 11.57 28.99  9.24 11.44 22.24 41.98 

𝑇𝐿𝑚𝑜𝑚
(3)

 
5.69 4.37 7.76 16.61 

 
10.41 10.03 15.87 27.25 

𝐵𝑀3−4 1.85 0.38 1.36 76.27  4.48 2.97 50.28 98.26 

𝐵𝑀3−6 2.36 4.24 45.47 93.55  8.01 22.21 76.45 98.98 

𝑇𝑀𝐶−𝐿𝑅 10.67 14.19 19.17 31.33  17.97 23.11 28.29 42.85 

𝑇𝑤 10.41 26.19 62.1 94.05  18.41 37.92 74.85 97.18 

𝑇𝑀𝐶−𝐿𝑅
− 𝑇𝑤 4.66 9.61 37.35 80.69 

 

10.12 18.3 52.31 88.25 

𝑇𝑠&5 2.23 1.23 2.75 15.28  5.14 4.26 12.21 42.95 

𝑇𝑘&5 14.03 25.23 68.33 98.07  26.01 44.81 87.46 99.66 

𝑍APD  9.44 20.3 62.67 96.31  15.9 31.24 76.01 98.61 

𝑍EPD  12.2 31.27 77.36 98.78  19.9 43.56 85.23 99.54 

𝑊 

R 

and D 

tests 

7.94 20.37 74.51 99.57  17.11 36.77 87.83 99.96 

W' 4.57 7.96 45.84 96.17  10.4 18.99 67.25 99.06 

𝑊𝑅𝐺 13.45 38.9 93.24 100  24.03 55.61 97.65 100 

𝐷 3.95 8.86 56.63 95.61  8.24 16.19 69.03 97.64 

𝑟 4.13 6.62 41.26 94.84  9.57 16.53 62.23 98.54 
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𝑐𝑠 8.1 22.82 79.79 99.85  17.42 39.38 90.82 99.99 

𝑄 7.23 14.2 55.27 95.92  13.6 26.25 71.64 98.68 

Q−Q∗ 7.4 14.56 56.09 95.93  13.96 26.6 70.58 98.68 

BCMR 7.13 16.67 68.04 99.23  15.37 32.74 84.1 99.9 

𝛽3
2 8.73 31.12 90.92 99.97  17.7 47.03 96.14 99.99 

𝑇𝐸𝑃 

Other 

tests 

5 12.21 53.38 93.71  12.7 28.56 72.73 97.99 

𝐼𝑛 2.39 0.44 0 0  4.7 0.94 0.01 0 

𝑅𝑠𝑗 1.5 0.16 0 0  3.1 0.47 0 0 

 𝑇𝑆
` 14.45 41.05 90.12 99.69  23.32 53.7 93.92 99.85 

 

 

 

Table A3. Simulated power for symmetric distributions 

Distrib

ution 
Tests 

Type 
of the 

test 

α =0.05  α =0.1 

n =10 n =20 n =50 n =100 
 

n =10 n =20 n =50 n =100 

Beta 

(0.25,0.

25) 

 K-S 

EDF 

tests 

39.05 76.44 99.76 100 54.42 87.49 99.97 100 

 AD* 
63.39 

96.2 

100 100 
 

77.15 98.55 100 100 

 𝑍𝑐 75.51 99.28 100 100  87.25 99.83 100 100 

 

𝑍𝐴 58.76 98.28 100 100  77.04 99.56 100 100 

𝑃𝑆 62.33 96.16 100 100  76.47 98.55 100 100 

𝐾2 

Momen
t 

tests 

21.19 81 98.69 17.3  42.27 92.4 98.69 17.3 

JB 5.15 1.98 98.61 100  17.13 75.11 100 100 

𝐷𝐻 57.58 90.48 100 100  68.16 95.8 100 100 

RJB 5 1.34 0.18 99.97  8.42 3.11 69.37 100 

𝑇𝐿𝑚𝑜𝑚 65.42 98.07 100 100  81.15 99.23 100 100 

𝑇𝐿𝑚𝑜𝑚
(1)

 16.58 76.57 99.83 100  37.03 86.76 99.93 100 

𝑇𝐿𝑚𝑜𝑚
(2)

 7.17 44.9 96.22 99.99  15.73 62.59 98.25 100 

𝑇𝐿𝑚𝑜𝑚
(3)

 
8.33 24.28 85.42 99.6 

 
14.05 42.13 91.84 99.81 

𝐵𝑀3−4 5.18 1.94 98.11 100  13.74 64.5 100 100 

𝐵𝑀3−6 11.37 79.17 100 100  51.91 95.78 100 100 

𝑇𝑀𝐶−𝐿𝑅 64.22 86.84 99.17 99.98  72.09 91.07 99.53 99.99 

𝑇𝑤 41.5 83.75 99.83 100  52.5 89.18 99.93 100 

𝑇𝑀𝐶−𝐿𝑅
− 𝑇𝑤 31.38 85.42 99.96 100 

 
45.51 90.97 99.98 100 

𝑇𝑠&5 7 6.42 42.82 95.89  13.09 19.41 75.89 99.95 

𝑇𝑘&5 37.45 75.74 98.96 100  57.03 86.01 99.61 100 

𝑍APD  59.72 92.78 100 100  69.98 96.35 100 100 

𝑍EPD  47.01 87.14 99.86 100  55.9 91.24 99.91 100 

𝑊 
R 

and D 
tests 

70.57 98.65 100 100  84.06 99.67 100 100 

W' 53.46 93.98 100 100  70.74 97.89 100 100 

𝑊𝑅𝐺 82.58 99.78 100 100  90.57 99.92 100 100 

𝐷 9.6 6.66 5.36 5.96  16.88 12.96 11.78 14.03 
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𝑟 50.54 92.68 100 100  68.01 97.35 100 100 

𝑐𝑠 71.25 98.84 100 100  84.34 99.73 100 100 

𝑄 47.76 73.66 98.69 100  56.48 81.86 99.51 100 

Q−Q∗ 47.59 73.81 99.03 100  57 82.01 99.49 100 

BCMR 67.33 97.96 100 100  81.7 99.51 100 100 

𝛽3
2 55.09 94.95 100 100  66.96 96.9 100 100 

𝑇𝐸𝑃 

Other 

tests 

36.65 86.99 100 100  61.29 95.74 100 100 

𝐼𝑛 20.45 9.98 1.27 0.07  23.49 11.03 1.38 0.08 

𝑅𝑠𝑗 4.95 1.17 0.03 0  7.42 1.84 0.05 0 

 

𝑇𝑆
` 

78.62 99.46 100 100 
 

86.1 99.72 100 100 

 

Table A4. Simulated power for symmetric distributions 

Distrib

ution 
Tests 

Type of 
the test 

α =0.05  α =0.1 

n =10 n =20 n =50 n =100  n =10 n =20 n =50 n =100 

Beta 

(1. 

50,1.50
) 

 K-S 

EDF 
tests 

4.52 6.37 11.51 25.47 9.57 13.26 21.73 41.9 

 AD* 
4.89 7.84 22.38 58.28  10.76 16.32 37.22 73.73 

 𝑍𝑐 5.41 8.33 38 88.76  12.19 20.45 61.06 96.81 

 

𝑍𝐴 3.55 4.71 31.2 89.09  8.25 12.42 50.76 95.69 

𝑃𝑆 4.68 7.59 22.72 59.22  10.44 16.13 37.49 74.1 

𝐾2 

Moment 

tests 

1.84 5.72 42.18 89.19  5.85 13.99 58.34 95.53 

JB 1.61 0.38 0.11 22.05  4.74 2.3 16.86 73.4 

𝐷𝐻 4.09 3.71 13.99 56.97  7.92 8.81 30.61 79.95 

RJB 1.57 0.41 0.02 0.02  4.00 1.22 0.14 25.00 

𝑇𝐿𝑚𝑜𝑚 3.31 7.49 32.19 72.16  9.13 16.47 47.19 83.48 

𝑇𝐿𝑚𝑜𝑚
(1)

 3.91 4.2 10.11 25.72  8.74 10.64 19.61 38.32 

𝑇𝐿𝑚𝑜𝑚
(2)

 4.29 3.99 5.96 12.38  9.58 9.53 13.2 21.4 

𝑇𝐿𝑚𝑜𝑚
(3)

 
4.82 4.14 4.81 8.22 

 
9.63 9.51 11.32 15.5 

𝐵𝑀3−4 1.63 0.38 0.1 21.22  4.75 2.04 15.54 72.84 

𝐵𝑀3−6 2.04 1.73 13.35 52.44  6.38 10.46 39.39 81.03 

𝑇𝑀𝐶−𝐿𝑅 7.18 8.86 9.16 13.38  13.58 15.82 16.09 21.51 

𝑇𝑤 7.27 15.29 34.93 71.14  13.99 23.89 49.04 81.31 

𝑇𝑀𝐶−𝐿𝑅
− 𝑇𝑤 4.27 5.73 16.51 44.08 

 
9.36 12.04 27.9 58.73 

𝑇𝑠&5 1.99 0.79 0.97 3.66  5.25 3.41 4.71 15.53 

𝑇𝑘&5 9.78 12.55 35 76.86  19.19 26.98 61.27 93.93 

𝑍APD  5.73 9.23 29.16 70.12  10.78 16.73 44.17 82.59 

𝑍EPD  8.24 16.9 47.1 85.07  14.7 26.83 59.94 92.41 

𝑊 
R 

and D 
tests 

4.9 7.92 30.05 80.23  11.35 17.99 50.65 91.78 

W' 3.22 3.02 11.32 53.03  7.44 8.41 25.25 72.90 

𝑊𝑅𝐺 7.93 17.64 59.91 96.83  15.89 31.35 76.47 99.28 

𝐷 4.41 8.59 44.94 89.14  8.66 15.18 58.94 94.2 
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𝑟 3.1 2.63 9.17 47.29  6.99 7.28 21.55 67.7 

𝑐𝑠 5.14 9.08 36.53 86.45  11.46 19.84 56.75 94.77 

𝑄 4.86 6.18 20.96 62.62  9.94 13.75 36.61 79.72 

Q−Q∗ 4.46 6.57 21.88 62.84  9.71 13.66 36.21 79.79 

BCMR 4.51 6.38 24.55 74.33  10.29 15.36 44.3 88.43 

𝛽3
2 5.08 13.1 57.34 95.89  12.13 24.5 72.75 98.7 

𝑇𝐸𝑃 

Other 

tests 

3.82 6.03 21.41 58.77  9.43 15.82 40.15 77.89 

𝐼𝑛 2.18 0.48 0 0  4.79 1.09 0.04 0 

𝑅𝑠𝑗 1.66 0.48 0.02 0  3.91 1.22 0.05 0 

 𝑇𝑆
` 8.32 17.64 46.44 73.5  15.51 27.85 57.08 80.17 

 

Table A5. Simulated power for symmetric distributions 

Distrib
ution 

Tests 

Type of 

the test 
α =0.05  α =0.1 

n =10 n =20 n =50 n =100 

 

n =10 n =20 n =50 

n 

=100 

Student
-t (5) 

 K-S 

EDF 

tests 

9.36 13.25 20.52 32.82 15.71 36.3 30.64 44.44 

 AD* 11.13 16.62 30.09 47.88  17.78 24.81 39.82 57.82 

 𝑍𝑐 11.72 18.86 36.06 54.04  17.26 25.32 42.5 60.48 

 

𝑍𝐴 12.48 19.19 33.56 49.63  19.38 27.39 42.98 59.69 

𝑃𝑆 11.23 16.81 30.37 48.39  17.85 24.89 39.99 58.09 

𝐾2 

Moment 

tests 

13.64 22.21 39.35 57.43  20.45 30.29 48.45 66.8 

JB 13.54 22.97 43.91 64.45  20.63 31.35 52.19 71.28 

𝐷𝐻 12.91 22.48 43.41 63.69  19.62 30.21 52.22 71.96 

RJB 13.78 24.08 45.97 67.56  21.17 33.14 55.07 75.07 

𝑇𝐿𝑚𝑜𝑚 12.59 20.26 35.56 53.41  19.41 27.82 43.82 62.57 

𝑇𝐿𝑚𝑜𝑚
(1)

 6.72 9.10 13.50 20.26  11.75 15.23 20.85 28.26 

𝑇𝐿𝑚𝑜𝑚
(2)

 4.69 6.49 8.59 11.23  10.08 12.25 15.08 18.26 

𝑇𝐿𝑚𝑜𝑚
(3)

 
4.64 5.65 7.07 8.52 

 
9.12 10.83 12.76 14.28 

𝐵𝑀3−4 13.63 22.96 43.92 64.45  20.77 31.25 52.16 71.28 

𝐵𝑀3−6 13.25 22.88 44.13 64.29  20.17 29.45 52.01 71.78 

𝑇𝑀𝐶−𝐿𝑅 4.82 4.83 5.55 5.77  9.3 9.77 9.91 11.27 

𝑇𝑤 9.72 16.55 35.13 57.72  15.11 23.88 43.86 66.88 

𝑇𝑀𝐶−𝐿𝑅
− 𝑇𝑤 8.15 

 

13.88 27.05 47.38 
 

13.85 19.9 33.99 54.5 

𝑇𝑠&5 13.12 20.95 34.46 45.92  20.14 28.76 43.61 55.21 

𝑇𝑘&5 9.08 20.55 44.48 66.2  13.65 25.19 50.64 72.9 

𝑍APD  11.35 21.14 40.27 61.81  18.64 28.97 49.3 69.57 

𝑍EPD  10.48 18.71 39.09 63.49  16.29 25.82 48.47 70.85 

𝑊 

R 

and D 

tests 

11.35 18.5 35.58 55.63  17.62 26.02 43.71 63.92 

W' 12.83 21.61 41.31 62.23  19.56 29.39 50.69 70.05 

𝑊𝑅𝐺 9.32 12.00 19.26 29.43  14.48 17.92 24.43 35.35 

𝐷 11.07 18.83 39.48 63.03  17.27 26.21 48.48 71.27 

𝑟 12.99 22.17 42.1 63.08  19.86 29.78 51.24 70.61 

𝑐𝑠 11.44 17.78 32.99 51.68  17.57 25.12 40.89 59.33 
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𝑄 9.48 13.76 23.86 33.36  15.76 21.61 31.17 41.26 

Q−Q∗ 9.55 13.62 24.01 32.67  15.68 21.09 31.05 41.05 

BCMR 12.12 19.42 37.15 57.61  18.32 27.33 45.76 65.68 

𝛽3
2 10.56 18.94 40.4 64.27  16.06 25.62 48.33 71.43 

𝑇𝐸𝑃 

Other 

tests 

11.93 17.45 30.94 48.61  18.46 25.74 40.4 59.56 

𝐼𝑛 12.51 24.04 47.94 71.22  20.61 32.76 57.23 78.86 

𝑅𝑠𝑗 12.72 22.55 43.49 66.39  20.04 31.37 54.73 75.8 

 𝑇𝑆
` 9.77 17.19 40.69 65.32  15.3 24.68 51.84 75.21 

 

 

 

Table A6. Simulated power for symmetric distributions 

Distribut

ion 
Tests 

Type of 

the test 
α =0.05  α =0.1 

n =10 n =20 n =50 n =100  n =10 n =20 n =50 n =100 

Student-t 

(8) 

 K-S 

EDF 

tests 

6.84 8.56 10.48 14.54 12.84 15.04 18.1 23.15 

 AD* 8.06 10.23 14.93 22.19  14 17.27 22.98 31.71 

 𝑍𝑐 8.48 11.78 20.14 31.04  13.95 18.02 26.37 37.91 

 

𝑍𝐴 9.03 12.34 18.04 26.15  15.14 19.66 26.42 35.86 

𝑃𝑆 8.17 10.26 15.07 22.58  14.13 17.3 23.06 32.06 

𝐾2 

Momen
t 

tests 

9.89 14.46 22.24 33.69  16.15 21.86 30.53 43.57 

JB 9.7 14.96 25.43 39.85  16.47 22.68 33.81 48.21 

𝐷𝐻 9.46 14.64 24.41 38.25  15.4 21.16 33.3 48.34 

RJB 9.74 15.73 26.34 41.74  16.43 23.46 35.56 51.69 

𝑇𝐿𝑚𝑜𝑚 9.08 12.52 18.33 26.88  15.39 19.32 25.89 36.25 

𝑇𝐿𝑚𝑜𝑚
(1)

 5.66 6.85 8.03 11.14  10.83 12.79 14.02 17.28 

𝑇𝐿𝑚𝑜𝑚
(2)

 4.89 5.87 6.17 7.96  10.76 10.82 12.24 12.91 

𝑇𝐿𝑚𝑜𝑚
(3)

 
5.03 5.43 5.76 6.60 

 
9.6 10.26 11.25 11.9 

𝐵𝑀3−4 9.77 14.97 25.44 39.8  16.58 22.62 33.78 48.24 

𝐵𝑀3−6 9.63 14.5 24.78 39.44  16.01 20.89 33.07 48.01 

𝑇𝑀𝐶−𝐿𝑅 4.68 4.81 5.28 4.8  9.24 9.92 10.32 9.54 

𝑇𝑤 7.15 10.29 17.01 29.36  12.68 16.75 25.03 38.95 

𝑇𝑀𝐶−𝐿𝑅
− 𝑇𝑤 6.68 

 

9.16 13.2 21.73 

 

11.87 14.63 19.79 29.09 

𝑇𝑠&5 9.69 13.58 19.96 26.52  16.05 20.58 28.23 36.05 

𝑇𝑘&5 6.97 13.44 25.18 40.66  11.47 17.88 30.9 48.62 

𝑍APD  8.35 13 21.85 34.61  14.68 20.34 30.02 43.94 

𝑍EPD  7.7 11.62 20.2 35.17  13.39 18.2 28.15 43.89 

𝑊 

R 

and D 

tests 

8.25 11.21 19.00 30.55  13.98 18.32 26.59 39.34 

W' 9.38 13.55 23.2 36.52  15.24 21.01 32.12 46.21 

𝑊𝑅𝐺 6.98 7.94 9.11 11.63  11.65 13.04 13.85 16.36 

𝐷 7.43 11.36 20.6 34.92  13.46 18.11 28.5 44.48 

𝑟 9.5 13.82 23.84 37.27  15.33 21.31 32.63 46.9 

𝑐𝑠 8.29 10.79 17.3 27.12  13.85 17.85 24.39 34.86 

𝑄 7.31 10.09 14.77 19.99  12.8 17.1 21.63 27.17 
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Q−Q∗ 7.36 9.15 14.47 20.27  13.47 16.29 21.79 28.13 

BCMR 8.79 11.92 20.16 32.3  14.62 19.46 28.22 41.34 

𝛽3
2 7.87 11.96 21.51 36.13  12.89 17.99 29.13 45.14 

𝑇𝐸𝑃 

Other 

tests 

8.83 10.68 15.49 22.69  14.85 17.78 23.71 33.45 

𝐼𝑛 9.03 15.3 27.43 44.67  16.46 22.89 36.97 55.94 

𝑅𝑠𝑗 9.09 14.00 23.4 38.03  15.71 21.91 34.05 50.34 

 𝑇𝑆
` 7.23 10.61 21.58 38.33  12.44 17.01 31.58 49.73 

 

Table A7. Simulated power for symmetric distributions 

Distribut

ion 
Tests 

Type 
of the 

test 

α =0.05  α =0.1 

n =10 n =20 n =50 n =100 
 

n =10 n =20 n =50 n =100 

Cauchy 
(o,7) 

 K-S 

EDF 

tests 

57.91 74.21 99.27 100 65.23 87.99 99.6 100 

 AD* 61.25 78.34 99.65 100  68.08 90.98 99.81 100 

 𝑍𝑐 58.3 73.92 99.34 100  63.4 86.74 99.53 100 

 

𝑍𝐴 61.14 76.42 99.44 100  67.91 89.51 99.66 100 

𝑃𝑆 61.44 78.55 99.65 100  68.38 91.14 99.82 100 

𝐾2 

Mom

ent 

tests 

59.44 75.58 99.27 100  67.58 89.32 99.61 100 

JB 59.29 76.46 99.55 100  67.14 89.99 99.72 100 

𝐷𝐻 62.62 78.35 99.6 100  69.27 90.5 99.81 100 

RJB 64.4 81.2 99.77 100  71.52 92.91 99.9 100 

𝑇𝐿𝑚𝑜𝑚 64.36 80.98 99.8 100  70.41 92.29 99.86 100 

𝑇𝐿𝑚𝑜𝑚
(1)

 27.92 50.04 96.88 99.97  35.94 71.31 97.85 99.99 

𝑇𝐿𝑚𝑜𝑚
(2)

 9.99 25.92 81.05 98.48  17.32 46.24 86.5 99.10 

𝑇𝐿𝑚𝑜𝑚
(3)

 
4.92 13.2 56.59 87.71 

 
9.88 28.64 65.93 91.98 

𝐵𝑀3−4 59.32 76.23 99.54 100  67.07 89.94 99.72 100 

𝐵𝑀3−6 61.35 78.98 99.72 100  68.43 91.01 99.8 100 

𝑇𝑀𝐶−𝐿𝑅 11.51 14.25 34.58 64.18  18.77 29.58 47.66 74.83 

𝑇𝑤 50.92 73.39 99.81 100  57.35 89.2 99.84 100 

𝑇𝑀𝐶−𝐿𝑅
− 𝑇𝑤 42.52 

 

66.99 99.6 100 

 

47.69 84.76 99.74 100 

𝑇𝑠&5 58.99 73.03 98.33 99.99  65.89 86.44 99.04 100 

𝑇𝑘&5 51.16 85.96 99.75 100  54.45 88.08 99.81 100 

𝑍APD  60.93 88.61 99.76 100  68.47 91.87 99.84 100 

𝑍EPD  54.36 86.46 99.78 100  60.52 89.74 99.85 100 

𝑊 

R 

and D 

tests 

59.47 86.09 99.61 100  65.71 89.28 99.73 100 

W' 62.9 88.71 99.71 100  69.7 91.83 99.79 100 

𝑊𝑅𝐺 52.99 78.17 98.47 99.99  58.37 81.51 98.94 100 

𝐷 59.24 87.93 99.74 100  65.92 90.92 99.85 100 

𝑟 63.2 89.04 99.72 100  69.97 92.02 99.8 100 

𝑐𝑠 59.45 85.4 99.51 100  65.6 88.55 99.67 100 

𝑄 42.1 60.04 79.28 89.69  49.65 66.07 83.14 91.36 

Q−Q∗ 41.83 58.11 79.2 89.11  49.29 64.48 82.8 90.98 

BCMR 60.95 87.03 99.62 100  67.08 90.26 99.74 100 

𝛽3
2 55.68 86.61 99.76 100  61.65 89.55 99.82 100 
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𝑇𝐸𝑃 Other 

tests 

60.07 86.22 99.66 100  66.77 89.76 99.76 100 

𝐼𝑛 64.86 90.95 99.83 100  72.65 93.64 99.91 100 

𝑅𝑠𝑗 64.96 91.6 99.87 100  72.44 94.01 99.93 100 

 𝑇𝑆
` 51.67 86.27 99.84 100  58.35 89.88 99.9 100 

 

Table B1. Simulated power for Asymmetric distributions 

Distribution Tests 

Type 

of the 
test 

α =0.05  α =0.1 

n =10 n =20 n =50 n =100 
 

n =10 n =20 n =50 n =100 

Beta (3,1) 

 K-S 

EDF 

tests 

13.5 28.27 63.86 95.51 23.12 41.01 77.88 98.53 

 AD* 18.46 41.09 88.3 99.93  29.8 55.88 94.33 99.99 

 𝑍𝑐 21.06 48.92 96.38 100  33.96 66.73 98.95 100 

 

𝑍𝐴 20.64 52.6 98.57 100  32.33 67.79 99.51 100 

𝑃𝑆 18.06 40.26 87.51 99.89  29.49 54.98 93.67 99.97 

𝐾2 

Mome
nt 

tests 

12.35 21.26 51.98 97.29  20.97 35.33 79.5 99.8 

JB 13.35 22.88 61.62 98.56  23.99 43.8 90.2 99.91 

𝐷𝐻 14.54 34.63 88.79 99.91  23.34 49.08 94.77 100 

RJB 11.02 17.31 39.49 88.06  19.23 29.82 65.47 99.54 

𝑇𝐿𝑚𝑜𝑚 12.32 39.83 91.35 99.95  23.9 56.8 95.77 99.99 

𝑇𝐿𝑚𝑜𝑚
(1)

 6.93 18.99 58.53 92.92 
 

12.79 31.88 71.63 96.59 

𝑇𝐿𝑚𝑜𝑚
(2)

 5.34 11.51 35.97 72.01 
 

10.98 20.85 50.50 82.00 

𝑇𝐿𝑚𝑜𝑚
(3)

 
5.29 8.08 24.77 52.66 

 

10.42 15.84 37.38 65.36 

𝐵𝑀3−4 13.47 23.13 62.08 98.56  23.98 43.33 90.24 99.91 

𝐵𝑀3−6 14.84 31.55 77.22 98.94  27.11 51.58 91.79 99.89 

𝑇𝑀𝐶−𝐿𝑅 13.55 23.88 41.97 73.6  22.48 34.84 53.86 82.06 

𝑇𝑤 7.52 9.75 11.45 16.18  13.58 16.74 18.88 24.73 

𝑇𝑀𝐶−𝐿𝑅
− 𝑇𝑤 4.28 6.56 22.8 54.65 

 

8.56 12.82 34.21 65.81 

𝑇𝑠&5 15.49 30.66 74.57 97.86  24.01 44.62 86 99.4 

𝑇𝑘&5 10.73 12.92 16.37 18.68  19.67 23.06 28.17 32.99 

𝑍APD  15.37 36.47 85.93 99.78  25.98 51.92 92.95 99.95 

𝑍EPD  9.47 11.27 11.42 12  15.88 18.1 17.93 18.93 

𝑊 

R 

and D 

tests 

20.7 48.9 95.74 100  33.1 65.1 98.51 100 

W' 18.04 40.62 91.16 100  28.85 56.06 96.45 100 

𝑊𝑅𝐺 22.26 54.37 97.28 100  34.57 69.22 98.88 100 

𝐷 9.33 12.96 21.17 34.53  16.41 20.97 31.52 46.31 

𝑟 17.63 39.18 90.18 99.99  28.09 54.59 95.74 100 

𝑐𝑠 20.72 49.75 96.37 100  33.1 65.97 98.71 100 

𝑄 9.94 9.88 10.37 9.34  16.35 17.74 19.74 18.88 

Q−Q∗ 23.07 62.79 99.65 100  34.96 76.82 99.88 100 

BCMR 20.47 46.98 94.98 100  32.18 63.31 98.12 100 

𝛽3
2 5.9 7.62 17.37 34.01  12.08 15.25 27.58 49.02 

𝑇𝐸𝑃 

Other 

tests 

18.34 41.48 87.6 99.78  30.46 57.37 93.86 99.96 

𝐼𝑛 12.38 18.49 29.37 45.57  20.69 27.65 40.49 58.05 

𝑅𝑠𝑗 7.78 9.13 8.29 8.21  13.48 14.29 14.07 14.34 

 𝑇𝑆
` 10.77 17.07 21.96 18.67  18.91 26.68 30.31 24.37 
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Table B2. Simulated power for asymmetric distributions 

Distribution Tests 

Type 

of the 
test 

α =0.05  α =0.1 

n =10 n =20 n =50 n =100 
 

n =10 n =20 n =50 n =100 

𝝌𝟐 (5) 

 K-S 

EDF 
tests 

13.14 27.99 58.22 88.99 21.58 40.09 71.16 94.40 

 AD* 17.65 38.61 80.29 98.56  26.92 51.04 88.27 99.48 

 𝑍𝑐 19.96 44.27 88.91 99.75  29.22 57.45 94.91 99.94 

 

𝑍𝐴 19.87 46.32 92.49 99.96  29.93 58.54 96.32 99.98 

𝑃𝑆 17.39 38.15 79.05 98.35  26.92 50.48 87.24 99.25 

𝐾2 

Mom
ent 

tests 

16.76 34.17 70.47 96.87  25.05 45.28 82.91 99.35 

JB 17.76 36.04 75.3 98.34  27.65 51.47 90.01 99.61 

𝐷𝐻 15.6 36.83 85.68 99.51  23.44 48.11 92.44 99.89 

RJB 15.92 31.96 66.61 95.13  24.37 43.75 80.67 99.07 

𝑇𝐿𝑚𝑜𝑚 14.66 37.56 84.2 99.29  23.29 50.47 90.76 99.78 

𝑇𝐿𝑚𝑜𝑚
(1)

 7.63 17.97 49.38 84.78  13.20 28.79 62.16 90.69 

𝑇𝐿𝑚𝑜𝑚
(2)

 5.34 10.82 29.52 60.72  10.70 18.92 42.55 71.98 

𝑇𝐿𝑚𝑜𝑚
(3)

 
5.2 8.25 20.49 43.42 

 
9.72 15.38 31.44 55.42 

𝐵𝑀3−4 17.92 36.18 75.6 98.35  27.75 51.32 90.03 99.61 

𝐵𝑀3−6 18.67 39.01 79.21 97.98  28.67 52.75 89.77 99.55 

𝑇𝑀𝐶−𝐿𝑅 8.07 13.79 25.44 50.01  14.96 22.91 36.87 62.02 

𝑇𝑤 7.92 12.87 17.4 25.78  13.48 20.22 24.6 33.86 

𝑇𝑀𝐶−𝐿𝑅
− 𝑇𝑤 5.84 

 

9.18 19.43 40.86 

 

10.43 14.74 28.49 51.48 

𝑇𝑠&5 18.62 42.96 86.86 99.4  29.78 57.4 93.95 99.81 

𝑇𝑘&5 11.54 22.9 41.7 61.75  16.9 27.85 47.77 68.06 

𝑍APD  15.19 37.08 82.8 99.18  24.38 50.12 90.2 99.76 

𝑍EPD  10.64 17.95 28.65 44.67  16.74 25.28 36.87 51.99 

𝑊 

R 

and D 

tests 

19.45 44.4 89.07 99.74  28.98 56.7 94.43 99.92 

W' 19.04 41.4 85.42 99.54  28.19 53.37 92.02 99.79 

𝑊𝑅𝐺 18.21 42.8 88.19 99.77  27.23 55.89 93.7 99.97 

𝐷 13.23 24.7 47.5 73.27  20.27 33.08 57.1 79.57 

𝑟 18.95 40.8 84.71 99.47  27.8 52.7 91.31 99.71 

𝑐𝑠 19.41 44.4 89.43 99.8  28.92 57.04 94.62 99.93 

𝑄 12.38 33.6 87.09 99.8  21.09 49.02 93.84 99.98 

Q−Q∗ 14.2 23.1 41.74 57.72  22.1 32.93 52.12 68.69 

BCMR 19.49 43.7 88.32 99.7  29.02 56.4 94.01 99.91 

𝛽3
2 6.89 9.69 12.17 15.82  12.58 16.29 18.92 22.92 

𝑇𝐸𝑃 

Other 

tests 

19.67 41.9 83.71 98.92  29.41 55.1 90.98 99.73 

𝐼𝑛 15 31.3 57.95 82.13  24.15 40.66 67.11 87.58 

𝑅𝑠𝑗 12.1 21.5 34.44 52.38  19.39 28.6 44.16 62.23 

 𝑇𝑆
` 9.07 14.8 21.83 32.07  15.67 23.57 31.25 42.3 
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Table B3. Simulated power for asymmetric distributions 

Distribution Tests 

Type 

of the 

test 

α =0.05  α =0.1 

n =10 n =20 n =50 n =100 
 

n =10 n =20 n =50 n =100 

𝝌𝟐 (15) 

 K-S 

EDF 

tests 

7.9 12.17 22.75 41.39 14.04 20.61 34.68 55.79 

 AD* 8.75 15.41 32.82 61.2  15.26 24.53 44.98 71.83 

 𝑍𝑐 9.53 17.9 41.34 71.34  16.05 27.55 53.69 81.86 

 

𝑍𝐴 9.61 18.43 43.57 75.81  16.61 28.03 55.44 84.5 

𝑃𝑆 8.75 15.19 32.22 59.77  15.24 24.21 44.19 70.26 

𝐾2 

Mome

nt 

tests 

9.89 16.24 33.59 59.45  16.02 24.68 45.12 74.79 

JB 9.97 16.94 35.71 64.54  16.73 26.8 50.51 79.13 

𝐷𝐻 8.05 14.69 37.57 70.58  14.27 22.85 50.38 81.67 

RJB 9.33 15.46 31.49 57.73  15.41 23.93 43.96 74.31 

𝑇𝐿𝑚𝑜𝑚 8.04 15.55 35.69 65.95  14.17 24.17 47.33 76.68 

𝑇𝐿𝑚𝑜𝑚
(1)

 6.24 8.72 18.5 35.98  11.08 15.59 28.24 48.26 

𝑇𝐿𝑚𝑜𝑚
(2)

 5.08 6.6 11.8 21.72  10.42 13.04 20.38 32.22 

𝑇𝐿𝑚𝑜𝑚
(3)

 
5.12 6.09 9.17 15.81 

 
9.96 11.51 16.57 24.46 

𝐵𝑀3−4 10.05 16.98 35.91 64.7  16.87 26.75 50.65 79.25 

𝐵𝑀3−6 10.04 17.47 35.23 59.75  16.89 26.13 49.42 75.4 

𝑇𝑀𝐶−𝐿𝑅 5.47 7.06 9.84 15.95  10.5 13.47 16.99 24.93 

𝑇𝑤 6.12 8.01 9.19 10.9  11.38 14.25 14.86 17.1 

𝑇𝑀𝐶−𝐿𝑅
− 𝑇𝑤 5.07 

 

6.44 8.25 11.78 

 

10.07 11.57 14.21 19.35 

𝑇𝑠&5 9.69 19.41 44.98 76.54  17.42 29.84 59.3 86.14 

𝑇𝑘&5 7.52 11.59 19.03 26.48  12.57 16.66 24.71 33.28 

𝑍APD  8.35 15.85 36.41 67.56  14.91 24.92 48.98 78.63 

𝑍EPD  7.35 9.98 13.52 17.16  12.81 16.2 20.11 24.2 

𝑊 

R 

and D 

tests 

9.02 17.97 41.48 72.93  15.92 27.25 53.47 82.36 

W' 9.68 17.45 38.9 69.5  15.94 25.97 50.41 79.15 

𝑊𝑅𝐺 8.52 16.27 36.08 68.13  14.32 25.19 48.33 78.46 

𝐷 7.56 11.51 18.46 26.84  13.5 18.04 26.59 35.1 

𝑟 9.78 17.32 38.5 68.74  15.92 25.69 49.49 78.33 

𝑐𝑠 9.1 17.71 41.3 73.39  16.03 27.16 53.53 82.43 

𝑄 5.91 10.94 26.76 50.87  11.33 19.66 39.51 64.75 

Q−Q∗ 8.89 12.43 20.63 27.65  15.64 20.28 29.46 37.99 

BCMR 9.45 17.96 40.85 72.11  16.14 27.29 52.92 81.6 

𝛽3
2 5.59 6.39 7.88 8.32  10.63 11.74 14.19 14.47 

𝑇𝐸𝑃 

Other 

tests 

9.42 17.3 37.83 66.28  16.68 27.19 49.87 77.11 

𝐼𝑛 8.31 14.49 25.24 38.24  15.14 21.77 33.69 48.16 

𝑅𝑠𝑗 7.65 10.91 14.12 18.92  13.49 16.92 22.17 27.97 

 𝑇𝑆
` 6.23 8.29 10.43 13.25  11.38 14.72 17.93 20.6 
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Table B4. Simulated power for asymmetric distributions 

Distributio
n 

Tests 

Type 

of the 

test 

α =0.05  α =0.1 

n =10 n =20 n =50 n =100 
 

n =10 n =20 n =50 n =100 

Gamma(3,4

) 

 K-S 

EDF 

tests 

12.72 23.67 50.42 81.74 20.59 34.92 64.01 90.48 

 AD* 15.5 31.99 71.07 96.38  24.86 44.34 81.37 98.28 

 𝑍𝑐 17.63 37.68 81.99 99.09  26.75 50.16 90.05 99.81 

 

𝑍𝐴 17.81 39.81 86.39 99.71  27.35 51.59 92.02 99.92 

𝑃𝑆 15.38 31.37 69.98 95.85  24.77 43.81 80.3 97.93 

𝐾2 

Mom

ent 

tests 

15.8 30 62.93 93.98  23.61 40.58 76.87 98.48 

JB 16.51 31.63 68.05 96.31  25.68 45.96 84.55 99.21 

𝐷𝐻 14.2 31.18 77.8 98.56  21.44 41.9 86.73 99.62 

RJB 14.83 27.75 60.16 91.81  22.53 39.1 74.75 97.96 

𝑇𝐿𝑚𝑜𝑚 13.44 30.94 75.79 97.75  21.73 44.04 84.5 99.06 

𝑇𝐿𝑚𝑜𝑚
(1)

 7.18 15.05 41.69 76.65  12.87 24.46 54.82 84.93 

𝑇𝐿𝑚𝑜𝑚
(2)

 5.21 9.45 24.52 52.17  10.63 17.09 36.6 63.99 

𝑇𝐿𝑚𝑜𝑚
(3)

 
5.17 7.15 17.06 36.13 

 
9.77 13.56 27.13 48.01 

𝐵𝑀3−4 16.64 31.78 68.46 96.35  25.87 45.94 84.63 99.23 

𝐵𝑀3−6 17.05 33.64 71.21 95.46  26.7 46.88 83.81 98.63 

𝑇𝑀𝐶−𝐿𝑅 7.40 11.18 20.94 40.35  13.74 19.3 31.32 52.78 

𝑇𝑤 7.75 10.97 15.43 21.91  13.64 17.89 22.29 29.62 

𝑇𝑀𝐶−𝐿𝑅
− 𝑇𝑤 5.70 

 

8.16 16.18 33.09 

 

10.43 13.29 24.23 43.08 

𝑇𝑠&5 17.09 37.43 80.76 98.63  27.45 51.64 90.06 99.65 

𝑇𝑘&5 11.21 19.26 35.91 54.38  16.16 24.47 42.38 61.03 

𝑍APD  14.01 31.47 74.7 97.68  22.53 43.92 84.2 99.1 

𝑍EPD  10.43 15.24 24.3 37.49  16.45 22.19 32.65 45.61 

𝑊 

R 

and D 

tests 

17.02 37.56 81.89 99.05  26.42 49.93 89.41 99.78 

W' 17.12 35.45 77.71 98.4  25.78 47.03 86.28 99.41 

𝑊𝑅𝐺 16.04 35.35 79.87 99  24.83 47.97 88.03 99.7 

𝐷 11.97 20.73 40.5 63.11  18.76 28.76 50.00 70.72 

𝑟 16.99 34.99 76.97 98.22  25.52 46.28 85.63 99.32 

𝑐𝑠 17.04 37.31 82.19 99.22  26.37 49.85 89.83 99.81 

𝑄 10.22 26.94 75.98 98.63  18.14 41.56 86.98 99.63 

Q−Q∗ 13.33 20.24 36.02 52.08  20.9 29.77 46.87 63.32 

BCMR 17.42 37.06 80.94 98.94  26.36 49.63 88.9 99.75 

𝛽3
2 6.70 7.98 11.35 13.26  12.42 14 17.64 20.89 

𝑇𝐸𝑃 

Other 

tests 

17.41 35.79 76.19 97.22  27.2 48.66 84.92 98.9 

𝐼𝑛 13.85 26.6 51.19 74.59  22.79 36.07 60.51 81.82 

𝑅𝑠𝑗 11.31 17.92 29.24 43.69  17.87 25.37 38.82 53.68 

 𝑇𝑆
` 8.31 11.85 19.02 27.57  15.00 19.88 28.43 36.78 
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Table B5. Simulated power for asymmetric distributions 

Distribution Tests 

Type 

of the 

test 

α =0.05  α =0.1 

n =10 n =20 n =50 n =100 
 

n =10 n =20 n =50 n =100 

Weibull  

(15,3) 

 K-S 

EDF 

tests 

8.1 13.86 26.56 48.11 15.01 22.32 38.34 61.87 

 AD* 9.57 17.28 37.04 66.84  16.34 27.16 49.16 76.42 

 𝑍𝑐 10.52 20.37 45.84 75.51  17.3 30.16 57.41 84.42 

 

𝑍𝐴 10.83 21.03 47.44 78.49  17.93 30.91 58.76 85.63 

𝑃𝑆 9.49 17.11 36.43 65.44  16.34 26.95 48.34 75.05 

𝐾2 

Mom

ent 

tests 

10.78 19.98 38.9 67.54  16.86 28.62 50.49 79.8 

JB 10.89 20.65 41.58 71.85  18.13 30.98 56.4 83.34 

𝐷𝐻 8.97 17.44 42.66 75.19  15.46 26.02 55.33 84.89 

RJB 10 19.03 37.42 66.7  16.77 27.79 50.83 80.04 

𝑇𝐿𝑚𝑜𝑚 9.07 17.87 40.82 71.39  15.7 27 52.05 81.15 

𝑇𝐿𝑚𝑜𝑚
(1)

 5.83 9.87 21.67 42.82  11.27 17.28 31.82 54.57 

𝑇𝐿𝑚𝑜𝑚
(2)

 4.87 7.34 13.78 27.04  10.68 13.54 22.46 37.5 

𝑇𝐿𝑚𝑜𝑚
(3)

 5.15 5.84 10.69 18.51  9.97 11.64 18.28 28.25 

𝐵𝑀3−4 10.94 20.72 41.86 71.9  18.23 30.96 56.57 83.43 

𝐵𝑀3−6 10.85 20.94 41.49 67.93  18.27 29.67 54.56 80.33 

𝑇𝑀𝐶−𝐿𝑅 5.74 7.85 10.7 17.63  10.84 14.34 18.69 27.23 

𝑇𝑤 6.77 8.57 10.04 14.03  11.91 15.03 16.22 21.23 

𝑇𝑀𝐶−𝐿𝑅
− 𝑇𝑤 5.54 

 

7.12 9.5 15.15 
 

10.86 12.82 15.83 22.55 

𝑇𝑠&5 11.56 22.09 48.84 79.4  18.19 31.49 60.84 86.63 

𝑇𝑘&5 7.49 13.43 25.22 40.21  13.21 19.68 32.95 48.75 

𝑍APD  8.82 18.13 41.44 73.37  15.87 28.11 53.75 82.41 

𝑍EPD  7.45 11 15.27 22.95  12.84 17.32 22.58 31.06 

𝑊 

R 

and D 

tests 

10.14 20.2 46.18 77.35  17.21 30.08 57.56 85.03 

W' 10.5 20.38 44.35 75.07  17.25 29.25 55.77 83.22 

𝑊𝑅𝐺 9.23 17.4 38.64 70.7  15.81 26.35 50.12 79.8 

𝐷 7.97 12.95 22.2 35.24  13.76 20.45 30.47 44.77 

𝑟 10.54 20.3 44.15 74.6  17.12 29.17 55.06 82.56 

𝑐𝑠 10.14 19.88 45.5 77.38  17.2 29.88 57.14 84.83 

𝑄 10.11 15.38 24.58 34.03  16.71 23.65 34.44 44.82 

Q−Q∗ 6.72 10.98 27.12 46.09  12.81 19.22 36.96 57.86 

BCMR 10.52 20.34 45.73 76.72  17.39 30.31 57.49 84.86 

𝛽3
2 6.28 7.56 9.02 10.97  11.39 13.14 14.88 17.9 

𝑇𝐸𝑃 

Other 

tests 

10.43 19.57 42.18 71.54  17.9 30.08 54.75 81.25 

𝐼𝑛 9.13 17.76 31.01 48.86  16.84 25.79 40.34 59.14 

𝑅𝑠𝑗 8.21 12.98 18.55 27.01  14.59 20.04 27.09 37.39 

 𝑇𝑆
` 6.83 8.74 12.34 18.91  12.24 15.5 20.27 27.96 
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Table B6. Simulated power for asymmetric distributions 

Distribution Tests 

Type 

of the 

test 

α =0.05  α =0.1 

n =10 n =20 n =50 n =100 
 

n =10 n =20 n =50 n =100 

Exponential 

(5) 

 K-S 

EDF 

tests 

29.2 59.84 95.89 99.99 41.02 71.94 98.48 99.99 

 AD* 41.07 77.47 99.71 100  53.22 85.87 99.91 100 

 𝑍𝑐 45.18 83.64 99.98 100  57.91 91.44 99.99 100 

 

𝑍𝐴 46.1 86.82 99.99 100  58.49 92.64 99.99 100 

𝑃𝑆 40.48 76.72 99.67 100  53.05 85.36 99.89 100 

𝐾2 

Mom

ent 

tests 

31.45 59.52 95.72 99.99  42.33 71.82 99.18 100 

JB 34.24 64.38 97.94 100  48.89 81.05 99.79 100 

𝐷𝐻 35.06 74.24 99.71 100  46.03 82.79 99.92 100 

RJB 30.12 58.06 93.52 99.99  41.34 70.23 98.04 100 

𝑇𝐿𝑚𝑜𝑚 31.76 77.28 99.85 100  45.98 86.59 99.96 100 

𝑇𝐿𝑚𝑜𝑚
(1)

 12.18 43.06 91.11 99.9  19.82 56.92 95.39 99.97 

𝑇𝐿𝑚𝑜𝑚
(2)

 6.47 23.83 70.17 97.14  12.52 35.53 80.73 98.58 

𝑇𝐿𝑚𝑜𝑚
(3)

 5.54 14.48 51.59 87.76  9.94 24.18 64.06 92.79 

𝐵𝑀3−4 34.59 64.66 98.01 100  48.7 80.75 99.79 100 

𝐵𝑀3−6 37.39 72.77 99.22 100  52.27 84.05 99.8 100 

𝑇𝑀𝐶−𝐿𝑅 19.69 38.44 70.73 95.89  30.01 50.98 79.87 97.7 

𝑇𝑤 12.69 21.42 37.08 57.61  18.75 29.8 45.26 65.03 

𝑇𝑀𝐶−𝐿𝑅
− 𝑇𝑤 7.84 

 

20.27 63.35 94.24 
 

12.45 28.73 73.5 96.78 

𝑇𝑠&5 37.6 75.13 99.59 100  52.75 85.98 99.89 100 

𝑇𝑘&5 21.34 41.15 71.89 91.46  26.57 46.66 77.02 93.91 

𝑍APD  34.4 73.94 99.57 100  47.23 83.35 99.88 100 

𝑍EPD  18.29 31.43 56.16 80.09  25.12 39.58 63.82 84.59 

𝑊 

R 

and D 

tests 

44.8 83.53 99.98 100  57.23 90.91 99.99 100 

W' 42.26 79.26 99.9 100  54.16 87.6 99.99 100 

𝑊𝑅𝐺 44.76 84.53 99.94 100  56.68 91.36 100 100 

𝐷 27.4 52.55 88.34 99.06  36.6 61.98 92.03 99.49 

𝑟 41.79 78.53 99.87 100  53.58 86.93 99.98 100 

𝑐𝑠 44.82 83.89 99.98 100  57.28 91.14 99.99 100 

𝑄 39.91 87.52 99.99 100  53.61 93.97 100 100 

Q−Q∗ 25.53 41.59 68.85 85.63  34.51 51.64 77.74 92.07 

BCMR 44.53 82.74 99.97 100  56.98 90.48 99.99 100 

𝛽3
2 11.08 15.97 24.72 35.74  17.48 23.09 32.44 43.94 

𝑇𝐸𝑃 Other 

tests 

41.79 77.56 99.54 100  54.57 86.51 99.85 100 

𝐼𝑛 32.83 59.92 90.91 99.38  44.13 69.08 94.19 99.66 

𝑅𝑠𝑗 24.23 43.14 70.85 90.39  32.56 51.52 77.88 93.52 

 𝑇𝑆
` 16.69 27.28 46.26 65.7  26.11 39.18 57.18 73.82 
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Table B7. Simulated power for asymmetric distributions 

Distribut
ion 

Tests 
Type of 

the test 
α =0.05  α =0.1 

n =10 n =20 n =50 n =100  n =10 n =20 n =50 n =100 

Lognorm

al (1,1) 

 K-S 

EDF 
tests 

45.41 79.01 99.51 100 56.28 86.34 99.75 100 

 AD* 57.4 90.12 99.99 100  67.58 93.95 99.99 100 

 𝑍𝑐 61.26 92.69 100 100  71.2 96.25 100 100 

 

𝑍𝐴 61.82 94.06 100 100  71.9 96.8 100 100 

𝑃𝑆 57.12 89.79 99.99 100  67.4 93.68 99.99 100 

𝐾2 

Momen
t 

tests 

47.3 79.67 99.63 100  57.18 86.65 99.97 100 

JB 50.2 83 99.85 100  63.99 92.3 100 100 

𝐷𝐻 52.32 88.57 100 100  61.55 93.02 100 100 

RJB 47.12 78.83 99.45 100  57.17 86.32 99.9 100 

𝑇𝐿𝑚𝑜𝑚 49.23 89.95 99.99 100  61.12 94.19 100 100 

𝑇𝐿𝑚𝑜𝑚
(1)

 18.7 62.47 98.46 100  28.15 73.66 99.32 100 

𝑇𝐿𝑚𝑜𝑚
(2)

 8.49 37.87 89.17 99.82  15.46 49.94 93.64 99.92 

𝑇𝐿𝑚𝑜𝑚
(3)

 5.47 22.36 74.24 97.71  10.45 33.02 82.82 98.92 

𝐵𝑀3−4 50.35 83.15 99.85 100  63.8 92.23 100 100 

𝐵𝑀3−6 53.86 87.69 99.97 100  67.21 93.55 100 100 

𝑇𝑀𝐶−𝐿𝑅 24.3 47.94 82.72 98.9  35.08 60.8 89.59 99.54 

𝑇𝑤 21.52 43.01 77.07 95.23  27.97 50.25 81.43 96.53 

𝑇𝑀𝐶−𝐿𝑅
− 𝑇𝑤 14.53 

 

42.82 90.48 99.69 
 

19.77 50.46 93.53 99.82 

𝑇𝑠&5 54.26 89.06 100 100  67.25 94.63 100 100 

𝑇𝑘&5 34.66 64.1 93.52 99.67  39.25 68.3 95.33 99.85 

𝑍APD  51.17 88.26 99.99 100  62.39 92.93 100 100 

𝑍EPD  30.12 54.51 87.91 98.75  36.73 61.13 90.99 99.1 

𝑊 

R 

and D 
tests 

60.83 92.84 100 100  70.95 96.02 100 100 

W' 58.86 91.16 100 100  68.63 94.79 100 100 

𝑊𝑅𝐺 59.84 92.87 100 100  69.56 95.94 100 100 

𝐷 44.64 76.19 98.53 100  52.79 81.73 99.18 100 

𝑟 58.63 90.83 100 100  68.16 94.56 100 100 

𝑐𝑠 60.98 92.85 100 100  70.84 96.15 100 100 

𝑄 50.11 91.79 100 100  62.77 95.93 100 100 

Q−Q∗ 40.63 64.04 90.86 98.86  49.47 72.61 94.22 99.48 

BCMR 60.9 92.42 100 100  70.76 95.81 100 100 

𝛽3
2 20.8 37.23 66.88 88.4  28.24 44.43 72.41 91.28 

𝑇𝐸𝑃 

Other 

tests 

58.52 90.22 99.98 100  69.16 94.34 100 100 

𝐼𝑛 50.34 81.23 99.05 100  60.61 86.25 99.5 100 

𝑅𝑠𝑗 41.11 69.22 94.78 99.79  49.56 74.65 96.32 99.86 

 𝑇𝑆
` 25.43 47.24 81.22 96.59  35.48 57.41 86.54 97.68 
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Table B8. Simulated power for asymmetric distributions 

Distribut
ion 

Tests 
Type of 

the test 
α =0.05  α =0.1 

n =10 n =20 n =50 n =100  n =10 n =20 n =50 n =100 

Gumbel 

(0,1) 

 K-S 

EDF 
tests 

11.5 20.73 42.67 72.65 19.07 31.13 55.56 82.06 

 AD* 14.2 26.96 59.22 88.82  22.13 37.59 70.17 93.25 

 𝑍𝑐 15.47 30.62 68.03 93.07  23.25 41.43 77.56 96.17 

 

𝑍𝐴 16.06 31.92 70.31 94.44  24.26 42.53 78.98 96.75 

𝑃𝑆 14.07 26.59 58.13 88.14  22.13 37.32 69.34 92.57 

𝐾2 

Moment 

tests 

12.35 27.58 58.89 88.4  22.03 37.68 69.88 94.19 

JB 13.35 28.94 62.16 90.93  23.82 41.94 76.09 96.11 

𝐷𝐻 14.54 26.81 65.53 93.45  19.89 36.37 76.19 96.57 

RJB 11.02 26.78 56.83 87.76  21.79 37.39 69.88 94.6 

𝑇𝐿𝑚𝑜𝑚 12.32 26.86 63.07 91.54  20.38 37.26 73.4 95.04 

𝑇𝐿𝑚𝑜𝑚
(1)

 6.93 14.08 34.4 64.82  12.85 23.01 46.15 74.47 

𝑇𝐿𝑚𝑜𝑚
(2)

 5.34 9.57 20.58 41.26  11.05 16.72 31.24 53.05 

𝑇𝐿𝑚𝑜𝑚
(3)

 
5.29 7.32 14.51 28.61 

 
9.42 13.59 23.68 38.98 

𝐵𝑀3−4 13.47 29.06 62.41 90.97  23.89 41.92 76.17 96.14 

𝐵𝑀3−6 14.84 30.42 62.7 89.15  24.18 40.9 74.88 94.75 

𝑇𝑀𝐶−𝐿𝑅 13.55 9.15 14.87 27.62  12.25 16.47 24.18 39.46 

𝑇𝑤 7.52 11.4 19.78 30.77  13.15 18.1 26.96 39.4 

𝑇𝑀𝐶−𝐿𝑅
− 𝑇𝑤 4.28 9.24 17.21 32.5 

 

10.86 14.83 24.95 41.81 

𝑇𝑠&5 15.49 32.93 72.07 95.42  24.87 45.68 82.3 97.93 

𝑇𝑘&5 10.73 19.59 38.66 58.76  14.77 24.39 44.69 64.64 

𝑍APD  12.71 26.95 63.7 92.23  20.42 38 74.16 95.59 

𝑍EPD  9.7 15.54 28.2 45.05  15.34 22.39 36.13 53.19 

𝑊 

R 

and D 
tests 

15.07 30.8 68.74 93.91  23.34 41.47 77.61 96.5 

W' 15.63 30.43 66.47 92.96  23.15 40.59 75.69 95.84 

𝑊𝑅𝐺 13.81 26.88 62.36 91.42  21.31 37.48 72.56 94.89 

𝐷 11.4 19.87 40.4 63.48  17.85 27.38 49.08 71.31 

𝑟 15.57 30.29 66.18 92.62  22.95 40.3 75.03 95.68 

𝑐𝑠 15.16 30.31 68.62 94.08  23.29 41.24 77.49 96.42 

𝑄 8.38 16.45 41.01 69.04  14.6 27.42 54.44 79.07 

Q−Q∗ 13.06 21.1 38.49 54.19  20.61 30.48 48.92 65.34 

BCMR 15.52 30.61 68.21 93.71  23.68 41.71 77.5 96.3 

𝛽3
2 7.46 10.03 16.55 24.24  12.66 15.93 23.48 31.77 

𝑇𝐸𝑃 

Other 

tests 

15.7 30.06 64.75 91.36  24.31 41.64 75.22 95.33 

𝐼𝑛 13.24 25.44 50.54 75.05  21.51 34.93 59.01 81.72 

𝑅𝑠𝑗 11.44 18.78 33.03 51.08  18.31 26.27 42.54 61.36 

 𝑇𝑆
` 8.3 11.93 23.77 38.16  14.27 19.3 32.59 48.16 
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4 Discussion of the results 

       Since complete lists of the simulated power values of several 

normality tests for the different sample sizes and significance 

levels represent a prohibitive amount of data, only a sample of 

these results, considered to be representative of the general trend 

of results, is presented, Tables A1 – A7 present the power results 

for Simulated power for Symmetric distributions, Tables B1–B8 

present the power results for Simulated power for Asymmetric 

distributions. 

4.1 Symmetric distribution with 𝜶 = 𝟎. 𝟎𝟓             

      With Laplace (3, 1) as alternative distribution, RJB and  𝑅𝑆𝐽 

tests had a power of 20.83%, 20.71% respectively at n =  10 to 

support that it is the most powerful test under this condition. The 

least powerful tests under the same condition are 𝑇𝐿𝑚𝑜𝑚
(3)

 and 

𝑇𝑀𝐶−𝐿𝑅  with power of 4.99%, 4.77% respectively. With 

increasing sample size (n) RJB and  𝑅𝑆𝐽 tests stay the most 

powerful tests, with n =  100 RJB, 𝑍EPD , 𝑇𝑤, 𝐼𝑛, 𝑅𝑠𝑗, 𝑇𝑆
` had 

power greater than or equal 90%; the 𝑇𝐿𝑚𝑜𝑚
(3)

 , 𝑇𝑀𝐶−𝐿𝑅, 𝑄, Q−Q∗, 

tests had power less than 50% at n =  100 or less and they had the 

least powerful tests. 

      In the case of a Uniform  (0, 1) as alternative distribution 

the𝑇𝑘&5, 𝑊𝑅𝐺, 𝑇𝑆
` tests had a power of 14.03%, 13.45%, 14.45%  

respectively at n =  10 to support that it is the most powerful test 

under this condition. With increasing sample size 𝑍𝑐 , 𝑊𝑅𝐺, 𝑇𝑆
` , 

𝛽3
2, tests the most powerful tests. With n =  100 about 23 tests 

had power greater than or equal 90%; the RJB, 𝐼𝑛, 𝑄,  
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𝑅𝑠𝑗 tests particularly proved to be very bad tests had power less 

than 2% at n ≤  100 they had the least powerful tests. 

     With Beta (0.25, 0.25) as alternative distribution 𝑍𝑐 , 

𝑊 ,𝑊𝑅𝐺 ,𝑐𝑠 , 𝑇𝑆
` tests had a power more than 70%  at n =  10 to 

support that it is the most powerful test under this condition. With 

n =  100 about 32 tests had power greater than or equal 95%; 𝐾2, 

D , 𝐼𝑛, 𝑅𝑠𝑗 tests particularly proved to be very bad tests had power 

less than 20 % at n ≤  100 they had the least powerful tests. 

     With Beta (1.5, 1.5) as alternative distribution 𝑇𝑘&5 , 

𝑍𝐸𝑃𝐷 ,𝑊𝑅𝐺  𝑇𝑆
` tests had a power about 8% or more than at n =  10 

to support that it is the most powerful test under this condition. In 

particular with increasing sample size the most powerful tests are 

𝑍𝑐, 𝑍𝐴 , 𝐾
2, 𝑍EPD ,𝑊𝑅𝐺 , 𝐷, BCMR when n =  100 the power for 

these tests greater than 80%. The least powerful tests are JB, RJB, 

𝑇𝐿𝑚𝑜𝑚
(2)

 , 𝑇𝐿𝑚𝑜𝑚
(3)

 𝐵𝑀3−4 , 𝑇𝑀𝐶−𝐿𝑅 , 𝑇𝑠&5 , 𝐼𝑛, 𝑅𝑠𝑗  had power less 

than 20 % at n ≤  100. 

     For t(5) and t(8) as alternative distributions all tests were poor 

in detecting non-normality; even at n =  100, where t = 5  all tests 

had power less than 70% except 𝐼𝑛 had 71.22% and the least 

powerful tests with power less than 12% are 𝑇𝐿𝑚𝑜𝑚
(2)

 

,𝑇𝐿𝑚𝑜𝑚
(3)

𝑇𝑀𝐶−𝐿𝑅. Where t =  8 all tests were very poor in detecting 

non-normality, the power of all tests less than 50% at n =  100. 

     With Cauchy (0, 7) as alternative distribution that is symmetric 

and long-tailed which approximates the normal distribution with 

undefined kurtosis value; all tests were very high power even at 

n = 10 the power of all tests is more than 40 % except 𝑇𝐿𝑚𝑜𝑚
(1)

 

,𝑇𝐿𝑚𝑜𝑚
(2)

𝑇𝐿𝑚𝑜𝑚
(3)

 ,𝑇𝑀𝐶−𝐿𝑅  had power 27.92% ,   9.99 , 4.92, 11.51 

respectively. With increasing sample size the performance of all 
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tests were very high and achieved 100% except 𝑇𝑀𝐶−𝐿𝑅 the least 

powerful test with power 64.18% at n=100. 

4.2 Symmetric distribution with 𝜶 = 𝟎. 𝟏 

     As expected, the power of all tests increased at 10% level of 

significance in contrast to these at the 5% level. This is because 

we have a wider range of critical values for non-rejection of the 

hypothesis of normality thus leading to a higher level of 

confidence in the results from the tests. 

     Little variation was observed in the result at the 10% level. For 

a Uniform (0, 1), n=100 the power of RJB test 74.18% while at 

5% level 1.21%. For Beta(0.25,0.25), n=20 the power of JB test 

75.11%  while at 5% level 1.98. 

     For student t(5) as alternative distribution the K-S test was the 

most powerful at n=20 while at the same sample size and 1% level  

the most powerful test was RJB test. 

4.3 A Symmetric distribution with 𝜶 = 𝟎. 𝟎𝟓 

     In the situation where the alternative distribution is Beta (3, 1), 

the most powerful tests were 𝑍𝑐 , 𝑍𝐴, 𝑊, 𝑊𝑅𝐺, 𝑐𝑠, Q−Q∗, BCMR 

all of them achieved power more than 20% at n = 10.while at n= 

20 and n=50 the most powerful test was Q−Q∗. In particular with 

increasing sample size at n =100 most of the tests achieved power 

more than 95%, except for 𝑇𝑤, 𝑍EPD , 𝑇𝑘&5, 𝑄, 𝑅𝑠𝑗, 𝑇𝑆
` the least 

powerful test and the power of these tests were less than 20%. 

          With 𝜒2(df-5) distribution as alternative distribution, the 

most powerful tests in all sample size were 𝑍𝑐 , 𝑍𝐴 , 𝑇𝑠&5, 𝑊, W' 

, 𝑊𝑅𝐺 .the least powerful tests were at n= 100 𝑐 (25.78) , 𝑐 (40.86) 

, 𝑇𝐿𝑚𝑜𝑚
(3)

 (43.42) , 𝑇𝑆
` (32.07).  
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     With 𝜒2(df-15) distribution as alternative distribution, the 

performance of all tests is less than when 𝜒2(df-5) distribution as 

alternative distribution, the most and the least powerful tests in all 

sample size were the same when 𝜒2(df-5) but with power less. 

     Regarding to Gamma (3, 4) as alternative distribution, the 

performance of all tests most of the tests achieved power more 

than 80% at n= 100, except for 𝑇𝑤, 𝑇𝐿𝑚𝑜𝑚
(3)

, 𝛽3
2 the least powerful 

tests and the power of these tests were about 20% at n =100. 

     A weibull (15, 3) distribution also showed RJB as the most 

powerful for sample sizes of 𝑇𝑠&5 in all sample size , while the 

least powerful tests were 𝑇𝑤, 𝑇𝑀𝐶−𝐿𝑅, 𝑇𝑀𝐶−𝐿𝑅 − 𝑇𝑤, 𝛽3
2 with 

power about 15% at n =100.  

     Regarding to Exponential (5) as alternative distribution, the 

performance of all tests most of the tests achieved power more 

than 90% at n= 100, except for  𝛽3
2 the least powerful tests and 

the power of these test were less than 40% at n =100 

     In the situation were the alternative distribution is log-normal 

(1, 1), proved to be one that was easily identified as being non 

normal by most of the tests. All tests achieved adequate power 

even small sample size. The power of all tests an n= 100 more 

than 95% expect  𝛽3
2 the power of this test under the same 

condition 91.28% which is the least powerful test. 

     A Gumbel (0, 1) distribution also showed 𝑍𝐴  and 𝑇𝑠&5 as the 

most powerful tests for all sample sizes, while the least powerful 

tests were 𝑇𝑤, 𝑇𝑀𝐶−𝐿𝑅, 𝑇𝑀𝐶−𝐿𝑅 − 𝑇𝑤, 𝛽3
2 with power about 25% 

at n =100. 

4.4 A Symmetric distribution with 𝜶 = 𝟎. 𝟏 
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As expected, the power of all tests increased at 10% level of 

significance in contrast to these at the 5% level. This is because 

we have a wider range of critical values for non-rejection of the 

hypothesis of normality thus leading to a higher level of 

confidence in the results from the tests. 

5 Conclusion 

     A comprehensive power comparison of existing tests for 

normality has been performed in the presented study.Given 

the importance of this subject and the wide spread 

development of normality tests,comprehensive descriptions 

and power comparison s of such tests are of considerable 

interest. 

Since recent comparison studies do not include several 

interesting and more recently developed tests, a further 

comparison of normality tests, which presented herein, is 

considered to be of foremost interest. 

.   This study addresses the performance of 36 normality 

tests, for various sample sizes n, considering several 

significance levels 𝜶 and for a number of symmetric, 

asymmetric distributions. 

   General recommendations stemming from the analysis 

of the power of the selected tests indicate the best choices for 

normality testing are 𝒁𝒄, 𝒁𝑨 , 𝒁𝐄𝐏𝐃 ,𝑾𝑹𝑮,and 𝑻𝑺
`  for 

Symmetric short - tailed distributions, 𝒁𝒄, 𝒁𝑨 , RJB, W', r and 

𝑰𝒏 Symmetric long - tailed distributions, 𝒁𝒄, 𝒁𝑨,CS, and 𝑰𝒏 

for Asymmetric short – tailed distributions, and 𝒁𝒄, 𝒁𝑨,𝒘, 𝑸 

and BCMR Asymmetric long – tailed distributions . 
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